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Point set registration is defined as a process to determine the spatial transforma-

tion from the source point set to the target one. Existing methods often iteratively

search for the optimal geometric transformation to register a given pair of point

sets, driven by minimizing a predefined alignment loss function. In contrast, we

firstly focus on learning neural network-based structure for point set registration,

which allow us to actively learns the registration pattern from a training dataset,

and then predict the desired geometric transformation to align a pair of point sets.

Consequently, the learning-based structure tends to transfer the learned knowledge

(i.e. registration pattern) from registering training pairs to testing ones without

additional iterative optimization.

In this work, we provide model-based (PR-Net) and model-free (CPD-Net)

solutions for modeling desired transformation in a learning framework. In com-

parison to the model-based modeling approach which targets to predict the pa-
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rameters in a Thin Plate Spline model, the model-free structure can directly learn

a continuous displacement field to align the source point set with the target one

without further penalization on it. The model-free learning structure dramatically

improves the registration performance from the model-based, especially for pairs

with high deformation levels. Moreover, the model-free learning structure can be

easily extended to 3D or nD cases. Furthermore, based on it, we propose the first

model-free learning structure (MF-GeoNet) for image matching, which achieves

the state-of-the-art 2D images registration performance.

Our approaches achieve robust and superior performance for registration of

point sets, even in presence of noise, outliers, and missing points, but requires

much less time for registering large number of pairs in comparison with classical

iterative methods. More importantly, for a new unseen pair of point sets, we are

able to directly predict the desired transformation using the learned model without

repetitive iterative optimization routine. Our methods can be extended to register

2D images, 3D shapes and be applied in medical image domain as well.
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Chapter 1

Introduction

In the introduction chapter, we firstly introduce the background and our moti-

vation for this thesis in section 1.1. In section 1.2, we introduce several important

historical researches which are mostly related to our work. Section 1.3 lists the

contributions of this thesis to our research community.

1.1 Background and Motivation

Over past decades, point set matching and registration is one of the most

important computer vision tasks [3, 4, 5, 6, 7, 8, 9, 10], serving a widespread

applications such as stereo matching, medical image registration, large-scale 3D

reconstruction, 3D point cloud matching, semantic segmentation and so on [11,

12, 13, 14, 15, 16, 17, 18]. The point set registration is mathematically defined

as a process to determine the spatial geometric transformations (i.e. rigid and

non-rigid transformation) that can optimally register the source point set to the

target one as shown in Figure 1.1. The desired registration algorithm can find

both rigid (i.e. rotation, reflection, and shifting) and non-rigid (i.e. dilation and

1
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Figure 1.1: Point set registration task. The point set registration is mathematically
defined as a process to determine the spatial geometric transformations (i.e. rigid
and non-rigid transformation) that can optimally register the source point set to
the target one.

stretching) transformations, as well as being robust to outliers, Gaussian point

drift, data incompleteness and so on.

To formulate the problem of point set registration, existing methods [8] often it-

eratively search the optimal geometric transformation to register two sets of points,

driven by minimizing a predefined alignment loss function. The alignment loss is

usually pre-defined as a certain type of distance metric (e.g. Euclidean distance

loss) between the transformed source point set and the target one. Previous efforts

[8, 19] have achieved great success in point set registration through the develop-

ment of a variety of optimization algorithms and distance metrics as summarized

in [19]. However these methods are often not designed to handle the real-time

point set registration or to deal with a large volume dataset. This limitation is

mainly contributed by the fact that, for each given pair of point sets, the itera-

tive method needs to start over a new iterative optimization process even for the

trivial similar cases. This observation suggests that the existing efforts are mainly

concentrated on the stand-alone development of the optimization strategies rather

than the techniques to smartly transferring the registration pattern acquired from

2
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aligning one pair to another. This triggers the motivation to develop our proposed

learning-based registration networks with the hope to actively learn the registra-

tion pattern from a set of training data, consequently, to adaptively utilize that

knowledge to directly predict the geometric transformation for a new pair of unseen

point sets.

Different from image data with a regular grid, point cloud data is often recorded

in an irregular and disordered non-grid format. Learning the point set registra-

tion requires the deep neural networks to be applicable to irregular and non-grid

point cloud data. In addition, unlike the image containing rich texture and color

information, the point cloud is solely represented with geometric information (i.e.

coordinates, curvature, normal). This suggests that a learning-based solution for

point set registration needs to address two main technical challenges: 1) robust

learning of both local and global geometric feature from point cloud set and 2) ro-

bust learning of the transformation from well-defined correlation measure between

pairwise geometric feature sets.

To clarify this problem, we firstly introduce some notations and we will keep

use them for the rest of our paper. Assume that we have a pair of source Si ⊂ RN

and target Gj ⊂ RN point sets for registration. N = 2 or N = 3 here. In general,

assuming that there exists a transformation φ : RN → RN . Iterative methods

usually define the optimization problem as:

φoptimal = argmin
φ
L(Si,Gj, φ), (1.1)
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where

L(Si,Gj, φ) = Lsim(Gi, φ(Sj)) + λLsmooth(φ), (1.2)

Here the function Lsim represents a similarity metric between transformed source

point set φ(Sj) and target point set (Gi. Typical similarity function can be L2

norm or correlation-based metric. Moreover some previous models treat target and

source point sets as two densities by GMM. Therefore a distance to measure the

difference of two densities can be applied as well. Some works treat one point set

as data to fit the other point set as a distribution. Therefore the similarity measure

can be a likelihood function. the function Lsmooth represents a penalization term

to enforce the smooth deformation. For registration field φ, we can penalize its

spatial gradients. For a motion φ, we can penalize its velocity field. In comparison,

learning-based models do not require iterative optimization process for each pair of

source and target point sets independently but optimize parameters of our network

using a dataset of pairs of point sets. After training process, our model is able to

directly predict the motion of source point set so that it can be statistically aligned

with the target point sets for a new pair from testing dataset.
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1.2 Our solutions and contributions

The proposed PR-Net[20] investigates two major research problems: 1) the de-

sign of the techniques for point cloud learning by introducing a novel reference op-

erator to enable formulating the correlation measure on arbitrary-structured data,

and 2) the development of learning paradigm for the geometric transformation

learning from pairwise feature sets. As a result, PR-Net is capable of handling the

real-time point set registration or a large volume datasets with a similar pattern.

To better understand the point set registrations, we briefly review related works

as follows. However, PR-Net has its limitation with a model-based transformation

as its target. It is not obvious to define an appropriate geometric transformation

to transform source point set to the target one. The PR-Net provides the shape

descriptor tensor and correlation tensor for the solution of feature learning, and

uses the thin plate spline to model the geometric transformation. Though PR-Net

is capable of learning the point registration, there are still some challenges that

are left to be addressed. Firstly, our current PR-Net indirectly uses the regular

grids to assist with the shape feature learning. A continuous operator, which can

directly be applied on point for feature learning, would be more applicable for

point registration. Secondly, PR-Net uses the TPS to model the geometric trans-

formation. Though it predicts impressive registration performance for shapes with

moderate deformation, the unsatisfactory performance for shapes with large de-

formation motivates us to study a model-free geometric transformation (e.g. the

displacement field).

We introduce our next learning-based network PC-Net for unsupervised point

correspondence. In contrast to the registration task, point sets correspondence

concerns with the establishment of point-wise correspondence for a group of 2D or

5
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3D point sets with similar shape description. Existing methods often iteratively

search for the optimal point-wise correspondence assignment for two sets of points,

driven by maximizing the similarity between two sets of explicitly designed point

features or by determining the parametric transformation for the best alignment

between two point sets. Without depending on the explicit definitions of point

features or transformation, our paper introduces a novel point correspondence

neural networks (PC-Net) that is able to learn and predict the point correspondence

among the populations of a specific object (e.g. fish, human, chair, etc) in an

unsupervised manner.

Considering the limitation of PR-Net, we further provide a model-free learning-

based network CPD-Net for learning point set registration. This chapter presents

a novel method, named coherent point drift networks (CPD-Net), for unsupervised

learning of geometric transformation towards real-time non-rigid point set registra-

tion. In contrast to PR-Net, which learns the parameters of a specific parametric

transformation, CPD-Net can learn a model-free displacement field function to

estimate geometric transformation from a training dataset, consequently, to pre-

dict the desired geometric transformation for the alignment of previously unseen

pairs. CPD-Net leverages the power of deep neural network to fit an arbitrary

function, that adaptively accommodates different levels of complexity of the de-

sired geometric transformation. Particularly, CPD-Net is proved with a theoretical

guarantee to learn a continuous displacement vector function that could further

avoid imposing additional parametric smoothness constraint as in previous works.

We demonstrate an application of continuous registration field-based learning

network for geometric matching problem. Recent efforts introduce convolutional

neural network to learn a geometric model (i.e. an affine or thin-plate spline

6



www.manaraa.com

transformation) for image matching and determine correspondences between two

images. The incapability of a geometric model in estimating a high complex-

ity parametric transform limits their use in applications to coarse image align-

ment/matching. This paper presents a novel approach to learn a model-free ge-

ometric transformation to estimate a continuous smooth displacement field and

identify two images with a significant geometric deformation. In contrast to model-

based method, our proposed method, named Model-Free Geometric Transforma-

tion Networks (MF-GeoNet), can learn displacement vector function to estimate

geometric transformation from a training dataset. MF-GeoNet is trained to have

robust generalization ability to directly predict the desired geometric transforma-

tion to identify the correspondence between unseen new pair of images.

We summarize the main contributions of this thesis work as follows:

• In the chapter two, we propose a first learning-based point set registration

paradigm PR-Net which learns registration patterns from training data, con-

sequently, to adaptively utilize that knowledge to directly predict the geomet-

ric transformation for aligning a new pair of point sets, without the necessity

to start over a new iterative search process. Futhurmore, the model-free

network CPD-Net can be more flexible to accommodate different levels of

complexity of the target geometric transformation for best aligning the pair

of point sets and can be easily extend to 3D or nD dataset in comparison with

PR-Net. It theoretically guarantees the continuity of predicted displacement

field as geometric transformation, which naturally eliminate the necessity

to impose a parametric hand-crafted smoothness constraint. The CPD-Net

is free of specific geometric model selection for modeling the desired trans-

formation, which avoids the potential mismatch between the transformation

7
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described by specific adopted models and the actual transformation required

for point set registration.

• In the chapter three, we introduce a novel learning-based point correspon-

dence paradigm PC-Net which can establish the point correspondence among

two or more groups of point sets. With generalization ability, PC-Net is able

to directly predict the point correspondence on the testing dataset without

a new iterative searching process.

• In the chapter four, we propose MF-GeoNet as a model-free geometric trans-

formation method which does not require model selection procedure. Con-

sequently, we avoid the critical mismatching problem of selected transforma-

tion model and actual desired geometric transformation between image pair.

Our proposed Geometric Transformation Network is theoretically guaranteed

to produce a spatially continuous displacement field. With this property, we

avoid imposing additional penalization term on displacement field as smooth-

ness constraint.
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1.3 Related Works

1.3.1 Iterative registration methods.

Current mainstream point set registration methods focus on the development

of optimization algorithms to estimate the rigid or non-rigid geometric transfor-

mations in an iterative routine. With the assumption that a pair of point sets

are related by a rigid transformation, a registration approach is to estimate the

best translation and rotation parameters in the iterative search routine aiming

to minimize a distance metric between two sets of points. One of the most pop-

ular methods for rigid registration, the Iterative Closest Point (ICP) algorithm

[13], was proposed to handle point set registration with least-squares estimation of

transformation parameters. ICP starts with an initial estimation of rigid transfor-

mation, followed by iteratively refining the transformation by alternately choosing

corresponding points from the point sets as estimate transformation parameters.

The ICP algorithm is reported to be vulnerable to the selection of corresponding

points for initial transformation estimation, and also incapable of dealing with

non-rigid transformation. To accommodate the deformation (e.g. morphing, artic-

ulation) between a pair of point sets, many efforts were spent in the development

of algorithms to address the challenges of a non-rigid transformation.

Thin plate splines (TPS)[21] is a widely used spline-based technique for model-

ing non-rigid transformation, which is introduced to geometric design by Duchon.

TPS can be regarded as an important special case of a polyharmonic spline. As-

sume that there is a mapping function f(x), which transform the source point

sets to the target one. f(x) can be fitted using a set of corresponding points col-

lected from source and target domain. Let the collected corresponding points {yi}
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collected from target point sets domain and {xi} collected from source point sets

domain, xi, yi ∈ R2. Our task is to minimize the following energy function:

Etps(f) =
K∑
i=1

‖yi − f(xi)‖2 (1.3)

By introducing a penalization term with parameter λ, we balance the variant

smoothness with the goodness of fit. Therefore, we rewrite our target energy

function as follows:

Etps,smooth(f) =
K∑
i=1

‖yi − f(xi)‖2

+ λ

∫∫ [(
∂2f

∂x21

)2

+ 2

(
∂2f

∂x1∂x2

)2

+

(
∂2f

∂x22

)2
]

dx1 dx2

(1.4)

For a set of controlling points {ci}, we define the parametric mapping function

as follows:

f(x) =
K∑
i=1

wiϕ(‖x− ci‖) (1.5)

where ‖ ∗ ‖ represents common Euclidean distance and {wi} are coefficients to

optimize. ϕ(r) = r2 log r is used here as the radial basis kernel.

TPS provides an useful and applicable parametric non-rigid transformation

modeling tool. In practice, once we have the two sets of corresponding points

from source and target domain, we can fit the non-rigid mapping function. In

10
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other words, the corresponding points in target domain can be regarded as a set

of parameters to define the desired function and in PR-Net, we focus on learning

this parameters set. Based on TPS, Chui and Rangarajan [22] further proposed

a robust method to model non-rigid transformation. Following RPM, the results

of TPS parametrization of the target transformation can be extended as the TPS-

RPM method. The authors showed that TPS-RPM can be equivalent to EM

for GMM. They proposed TPS-RSM algorithm with penalization on second order

derivatives to optimize the parameters of the desired transformation.

In addition, Myronenko et al. [3] proposed non-parametric coherence point

drift (CPD) algorithm which leverages Gaussian mixture likelihood and penalizes

derivatives of all orders of the velocity field to enforce velocity coherence so that

centroids of source point set move coherently to target point set. We summarize

CPD here as our baseline model for comparison. Let source point set M be the

centroids of a Gaussian mixture model (GMM) and the target point set N be a

data. We assume the optimal statistical alignment when we can maximize the

probability of GMM by fitting all the data points from set N . We force the GMM

centroids move as a group while it can preserve topological structure. We use

expectation maximization algorithm for the optimization task.

We assume that there be M points inM and M points in N . The probability

density function for a point s is:

p(s) =
M+1∑
i=1

P (i)p(s|i) (1.6)

where p(s|i) is the Gaussian distribution with center mi ∈M. Therefore we have:
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p(s|i) =
1

(2πσ2)D/2
exp

(
−‖s−mi‖2

2σ2

)
(1.7)

where P (i) = 1
M

and it is equal for all components of GMM. A parameter

w ∈ [0, 1] is further introduced to balance the uniform distribution with p(s|i) for

cases in presence of noise. And the mixure model can be rewritten as:

p(s) = w
1

N
+ (1− w)

M∑
i=1

1

M
p(s|i) (1.8)

From here, the optimization target is formed as the negative log-likelihood

function of the GMM which are re-parametrized by a set of parameters θ.

E(θ, σ2) = −
N∑
j=1

log
M+1∑
i=1

P (i)p(s|i) (1.9)

The correspondence probability can be defined as the posterior probability of

the GMM centroid (mi from source point set) given the data point (sj from target

point set).

P (i|sj) =
P (i)p(sj|i)
p(sj)

(1.10)

According to the Bayes’ theorem, the E-step is to compute the posterior “old”

probability distribution P old(i, sj) and the M step is the optimize the “new” dis-
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tribution by minimizing the following cost function:

cost = −
N∑
j=1

M+1∑
i=1

P old(i|sj) log(P new(i)pnew(sj|i)) (1.11)

Ignoring all the constants which don’t affect the optimization task, the cost func-

tion can be rewritten as:

cost(θ, σ2) =
1

2σ2

N∑
j=1

M+1∑
i=1

P old(i|sj)‖sj − T (mi, θ)‖2 +
NPD

2
log σ2 (1.12)

where

NP =
N∑
j=0

M∑
i=0

P old(i|sj) ≤ N (1.13)

with N = NP if w = 0. D is the dimension of points. And we have the P old

from previous parameters is:

P old(i|sj) =
exp

(
− 1

2σold2‖sj − T (mi, θ
old)‖2

)∑M
k=1 exp

(
− 1

2σold2‖sj − T (mk, θold)‖2
)

+ (2πσ2)
D
2

w
1−w

M
N

(1.14)

For the furthure step, the displacement function v and the transformation T is

defined as:

T (Y, v) = Y + v(Y ) (1.15)
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CPD algorithm leverages the Motion Coherence Theory (MCT) [23], which

states that points close to on another tend to move coherently, and thus, the

displacement function between the point sets should be smooth. A norm of v in

the Hilbert space Hm is defined as:

‖v‖2Hm =

∫
R

m∑
k=0

∥∥∥∥∂kv∂xk

∥∥∥∥2dx (1.16)

And this norm cam be alternatively defined in the Reproducing Kernel Hilbert

Space [23] as:

‖v‖2Hm =

∫
RD

|ṽ(s)|2

G̃(s)
ds (1.17)

where G is a unique kernel function associated with RKHS with G̃ is its Fourier

transform. ṽ is the Fourier transform of the function v and s is a frequency domain

variable. In CPD, the regularization term is chosen according to 1.17:

φ(v) =

∫
RD

|ṽ(s)|2

G̃(s)
ds (1.18)

where G is a Gaussian.

They reported that their algorithm can be easily extended to N-dimensional

space compared to TPS-RSM algorithm and more over, CPD can control the lo-

cality of spatial smoothness by changing the Gaussian filter witdth, whereas TPS

dose not have such flexibility. In comparison, we introduce our learning-based

model-free network CPD-Net, which can guarantee learning a smooth registration

displacement field without any additional regularization term such as in CPD and

TPS.
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Ma et al. [24] introduced a L2E estimator for non-rigid registration for handling

significant scale changes and rotations. Ma et al. [8] proposed a non-parametric

vector field consensus algorithm to establish the robust correspondence between

two sets of points. Their experimental result demonstrated that the proposed

method is quite robust to outliers. In [7], the authors emphasized the importance

to preserve local and global structures for non-rigid point set registration. Wang et

al. [25] proposed path following strategy for graph matching in order to improve the

computation efficency. Zhou et al. [26] proposed a fast alternating minimization

algorithm for multi-image matching.

Existing methods have achieved great success for both rigid and non-rigid point

set registration over past decades. However, they are mainly concentrated on the

stand-alone development of the optimization strategies for point set registration

rather than the techniques to learn the registration process as a pattern. In this

paper, the deficiency of these current algorithms drives us to develop a learning-

based registration paradigm that is able to actively learn the knowledge about how

to register two point sets, consequently, to adaptively utilize those knowledge to

directly predict the geometric transformation without the necessary to start over

a new iterative search process for each similar case.

1.3.2 Learning-based registration methods.

Recent great success of deep learning in various computer vision fields [27, 28,

29, 30, 31, 32, 33] motivates researchers to start modeling the registration problem

using deep neural networks [1, 34, 33, 30, 31, 32]. Earlier attempt in this direction

is mainly concentrated on the development of learning-based registration meth-

ods for pairwise image registration. For example, Rocco et al. [1] developed a
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CNN architecture to predict both rigid and non-rigid transformation for 2D image

matching. Balakrishnan et al. [34] proposed a deep learning method to predict the

non-rigid deformation field with application in deformable medical image registra-

tion. Both works share the common use of deep learning for visual feature learning

from image to formulate the pairwise image correlations. The method presented

in [1] tends to predict the parameters of TPS-based transformation function for

pairwise image registration, while the authors in [34] aim to predict a smooth reg-

istration field to approximate non-rigid transformation. Though it is not a direct

registration model, Zeng et al. [33] proposed a volumetric 3D-CNN to learn local

shape descriptor geometric patch matching. The aforementioned learning-based

registration methods, despite not working on point set registration, are encour-

aging for us to take a further step in this paper to investigate the possibility of

learning point set registration using deep neural networks.
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Chapter 2

Learning-based Registration

Networks

(This chapter is submitted as paper “Non-Rigid Point Set Registration Net-

works” under review and paper “Coherent Point Drift Networks: Unsupervised

Learning of Non-Rigid Point Set Registration” under review. The code for PR-

Net is available at: https://github.com/Lingjing324/PR-Net.)
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In this chapter, we introduce two learning-based registration networks PR-

Net and CPD-Net, which can directly predict the desired transformation to align

the source and target point sets. In contrast to previous methods, our network

jointly learn a registration pattern from a training dataset and is able to instantly

predict the desired transformation for an unseen pair from testing dataset without

additional iterative optimization process.

We firstly introduce a model-based learning networks for point set registration

network PR-Net. Different from image data with a regular grid, point cloud data

is often recorded in an irregular and disordered format. Learning the point set

registration requires the deep neural networks to be applicable to irregular point

cloud data. In addition, unlike the image containing rich texture and color in-

formation, the point cloud is solely represented with geometric information (i.e.

coordinates, curvature, normal). This suggests that a learning-based solution for

point set registration needs to address two main technical challenges: 1) robust

learning of both local and global geometric feature from point clouds and 2) ro-

bust learning of the transformation from well-defined correlation measure between

pairwise geometric feature sets. Therefore, the proposed PR-Net investigates two

major research problems: 1) the design of the techniques for point cloud learning by

introducing a novel reference operator to enable formulating the correlation mea-

sure on arbitrary-structured data, and 2) the development of learning paradigm

for the geometric transformation learning from pairwise feature sets.

Figure 2.1 illustrates the pipeline of the proposed PR-Net which is composed

of three main components. The first component is “learning shape descriptor ten-

sor”. In this component, the proposed grid-reference structure is developed to

enable feature learning and formulate the correlation relationship on arbitrary-
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structured data. The second component is “learning shape correlation tensor”. In

this component, the shape correlation tensor is developed as a metric to further

evaluate the correlation between two shape descriptor tensors of point sets to be

registered. The shape correlation tensor is formulated as “all-to-all” point-wise

computation from the pair of shape descriptor tensors evaluated in the first com-

ponent. The third component is “learning of the parameters of transformation”.

In this component, we exploit the function mapping between space of the “shape

correlation tensor” and “the parameters of transformation” to determine the best

geometric transformation that statistically aligns the source point cloud set and

the target one. In this chapter, PR-Net utilizes the CNN as functional regression

model to approximate the aforementioned mapping function for the parameters

learning of the desired transformation.

In PR-Net, we propose a novel technique to learn the global and local shape

aware “shape descriptor tensor” directly from the point cloud with irregular and

disordered format. The shape descriptor tensor is proved to be effective and effi-

cient in extracting the geometric shape features, even for point cloud in presence of

missing points, noise, and outliers. A novel shape correlation tensor is proposed to

comprehensively evaluate the correlation between two point sets to be registered.

We propose a novel statistical alignment loss function that drives our structure to

determine the optimal geometric transformation that statistically aligns the source

point cloud set and the target one. In all, we propose a novel learning-based point

set registration paradigm which learns registration patterns from training data,

consequently, to adaptively utilize that knowledge to directly predict the geomet-

ric transformation for aligning a new pair of point sets, without the necessity to

start over a new iterative search process. In conclusion, given a large number
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Figure 2.1: PR-Net pipeline. The proposed PR-Net includes three parts: learning
shape descriptor tensor (SCT), learning correlation tensor, and shape transforma-
tion prediction. For a pair of source point set Si and target point set Gj, we first
generate two reference grids and map points of source and target point sets on
them as two shape descriptor tensor Fs and Fg. We define the shape correlation
tensor C between the source and target shape descriptor tensors. By leveraging
2D-CNN, we learn the desired parameters θ of transformation Tθ based on the
shape correlation tensor. The learned optimal model transforms source point set
to be statistically aligned with the target point set.
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of data set for training, PR-Net demonstrates a stable generalization ability to

directly predict the desired non-rigid transformation for the unseen point clouds

data even in presence of a great level of noise, missing points, and outliers.

Though PR-Net is capable of learning the point registration, there are still some

challenges that are left to be addressed. Firstly, our current PR-Net indirectly uses

the regular grids to assist with the shape feature learning. A continuous operator,

which can directly be applied on point for feature learning, would be more applica-

ble for point registration. Secondly, PR-Net uses the TPS to model the geometric

transformation. Though it predicts impressive registration performance for shapes

with moderate deformation, the unsatisfactory performance for shapes with large

deformation motivates us to study a model-free geometric transformation (e.g. the

displacement field). Thirdly, PR-Net is difficult to be extended to 3d or nd dimen-

tional domain. Therefore, considering these limitations, we further introduce a

model-free learning-based network for deformable point set registration CPD-Net,

named coherent point drift networks (CPD-Net). CPD-Net leverages the power of

deep neural network to fit an arbitrary function, that adaptively accommodates

different levels of complexity of the desired geometric transformation. Particularly,

CPD-Net is proved with a theoretical guarantee to learn a continuous displacement

vector function that could further avoid imposing additional parametric smooth-

ness constraint as in previous works. Our experiments verify CPD-Net’s impressive

performance for non-rigid point set registration on various 2D/3D datasets, even

in presence of significant displacement noise, outliers, and missing points.

Figure 2.2 illustrates the pipeline of the proposed CPD-Net which consists of

three major components. The first component is “Learning Shape Descriptor’. In

this component, the global shape descriptor is learned with a multilayer perceptron
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Figure 2.2: Our pipeline. The proposed structure includes three parts: learning
shape descriptor, coherent PointMorph, and the alignment Loss. For a pair of
source point set Si and target point set Gj, we firstly leverage MLPs to learn
two global descriptors LSi

and LGj
. We then concatenate these two descriptors

to each coordinate {xk}k=1,2,...,m of source points as the input ([xk,LSi
,LGj

]) for
PointMorph structure. We further use MLPs to learn the drifts for each source
point. Finally we move the source point set by our predicted drifts and define
the alignment loss function between target and transformed source point sets for
back-propagation.

(MLP). The second component is “Coherent PointMorph”. In this component, we

firstly concatenate the point coordinate of source point, the global shape descriptor

of source point set, and global shape descriptor of target point set to form a new

descriptor for each source point. Three successive MLP takes the new descriptor

to learn the continuous displacement vector field. The third component is “Point

Set Alignment”. In this component, a loss function is defined to assess the quality

of alignment.

Overall, we introduces a novel Coherent Point Drift Networks (CPD-Net) that

can be trained in unsupervised manner, consequently it can be generalized to pre-

dict geometric transformation for non-rigid point set registration. CPD-Net lever-

ages the power of deep neural network to fit an arbitrary function, that is able to

accommodate different levels of complexity of the target geometric transformation

for best aligning the pair of point sets. The CPD-Net theoretically guarantees
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the continuity of predicted displacement field as geometric transformation, which

naturally eliminate the necessity to impose a parametric hand-crafted smoothness

constraint. The CPD-Net is free of specific geometric model selection for model-

ing the desired transformation, which avoids the potential mismatch between the

transformation described by specific adopted models and the actual transformation

required for point set registration.

2.1 Problem statement

Prior to discussion of our approach, we first define the point set registration

task. Let the training data set D = {(Si,Gj) ,where Si,Gj ⊂ RN}. We denote

Si source point set and Gj target point set. In this chapter, we mainly discuss

the situation when N = 2 and N = 3. We assume ∀(Si,Gj) ∈ D,∃θi, Tθi : RN →

RN , such that , Tθi : xi → x′i where xi ∈ Si and x′i ∈ Gj. Tθi can be rigid or non-

rigid transformation with parameters θi. For previous methods, θi is optimized

in a iterative searching process to optimally align a given target and source point

sets. For our method, we assume the existence of a neural network structure g

with a set of all its weights γ, such that gγ(Si,Gj) = θi. Our optimization task

becomes:

γoptimal = argmin
γ

[E(Si,Gj)∼D[L(Tgγ(Si,Gj)(Si),Gj)]], (2.1)

Therefore, for a given training set D, our task is to optimize parameters γ instead
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of θ/Tθ. The desired θ/Tθ is our model’s output. L(·) represents a similarity

measure.

2.2 Methods

2.2.1 PR-Net

We introduce our approach in the following sections. From section 2.2.1.1 to

2.2.1.4, four successive parts are illustrated to explain each module of our method

in details. Section 2.2.1.1 illustrates our structure for learning shape descriptor

tensor for point sets. In section 2.2.1.2, we introduce shape correlation tensor based

on the learned shape descriptors. The non-rigid shape transformation prediction

is introduced in section 2.2.1.3. The definition of the loss function is discussed

in section 2.2.1.4 and the settings of the training and model configuration are

explained in section 2.2.1.5.

2.2.1.1 Learning shape descriptor tensor

The first part of our structure is learning the shape descriptor for point sets.

To address the problem of irregular format of point set, we introduce two point

grids MSi
and MGj

as reference point sets, which are overlaid on the source point

set Si and the target point set Gj respectively.

For each point in the reference point sets, we learn a shape descriptor tensor

Fi
s or Fj

g by mapping the local and global information of non-regular source or

target point set on it. Specifically, as shown in Figure 2.3, taking Si for example,

∀xi ∈ MSi
, xi is 2D/3D geometric coordinates and we define the single layer

mapping U : (xi,Si)→ Rd as following:
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Figure 2.3: The schema of learning shape descriptor tensor process.

U(xi,Si) = Maxpool{ReLU(um[xi,yi] + cm))}yi∈Si
(2.2)

,where parameters um ∈ Rm×4/6, cm ∈ Rm×1 and [*,*] means concatenation.

For multi-layers’ structure, we repeat the linear combination and Leaky-ReLU

[35] activation parts before applying the Max-pool layer. The MLP-based struc-

ture was firstly introduced in PointNet [30] for directly learning geometric features

from point cloud. Please refer to PointNet [30] for more details. The single layer

MLP-based function U(*) can be regarded as a mapping to exact features from

non-regular point set, which is driven by the loss function. In our case, we have

three layers MLP. In this way, we transfer information of source and target point

sets to two shape descriptor tensors on reference grids. We define the shape de-

scriptor tensor Fi
S and Fj

G. Fi
S, Fj

G ∈ Rn×m×d where
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Fi
S=



U(x11,Si), U(x12,Si) . . . U(x1n,Si)

U(x21,Si) U(x22,Si) . . . U(x2n,Si)

. . .

U(xn1,Si) U(xd2,Si) . . . U(xnm,Si)



, where xnm ∈ MSi
. Similarly, we have the shape descriptor tensor Fj

G for

MGj
.

2.2.1.2 Shape correlation tensor

As shown in Figure 2.4, for the two source and target grid points MSi
and MGj

with shape descriptor tensors Fi
S = [fij = U(xij,Si)] and Fi

G = [gij = U(xij,Gi)],

our next step is to define the shape correlation tensor between the input and target

shape descriptor tensors. We define the shape correlation tensor in the following

step. Let M be a similarity metric, such that M : Rd × Rd → R. In this chapter,

we simply letM as inner product. ∀fij ∈ Fi
S, we sort the its point-wise correlation

with elements in Fj
G as Cij ∈ Rt and t = nm, where

Cij = [M(fij,g11),M(fij,g12), ...,M(fij,gmd)] (2.3)

We define C = [Cij] ∈ Rn×m×t as the shape correlation tensor. It has t-

dimensional channel to save the correlation information between each the point in

MSi
with all the points in MGj

. We normalize each channel of element Cij in the
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shape correlation tensor.

Figure 2.4: The schema of formulating correlation tensor process.

2.2.1.3 Shape transformation prediction

Before we discuss shape transformation prediction, we firstly review two clas-

sical parametric functions for rigid and non-rigid transformations. For affine

transformation including translation, scaling, rotation and shear. Let θrigid =

{α, r1, r2, r3, r4, s1, s2} and we have

Tθ=


r1 cosα r2 sinα s1

r4 sinα r5 cosα s2

0 0 1


Even though we do not discuss the rigid case in this chapter, our model can be

easily adjusted for rigid registration.

For non-rigid transformation, let θnonrigid be the controlling points in Thin

Plate Spine. In this chapter, we choose 9/27 controlling points distributed as a

3×3/3×3×3 grid for 2D/3D data. For a pair of 2D source and target point sets, our

target θnonrigid = {(θ1, θ2), ..., (θ17, θ18)}, are a set of coordinates of nine controlling
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points in TPS [21]. Let the original controlling points in TPS be θ0 and θ0 =

[(0, 0), (−1, 0), ..., (1,−1)]. For a pair of 3D source and target point sets, our target

θnonrigid = {(θ1, θ2, θ3), ..., (θ79, θ80, θ81)}, are a set of coordinates of nine controlling

points in TPS [21]. Let the original controlling points in TPS be θ0 and θ2D0 =

[(0, 0), (−1, 0), ..., (1,−1)] and θ3D0 = [(0, 0, 0), (−1, 0, 0), (1, 0, 0), ..., (1, 1, 1)]. After

achieving new positions of controlling points θnonrigid, together with θ0, we can

solve the non-rigid transformation Tθ according to TPS. In this case, we have

18/81 parameters to be optimized for defining the non-rigid transformation to

align the 2D/3D source and target point sets. For a given pair of source point set

Si and target point set Gj as inputs, based on their shape correlation tensor C

from the previous step, we further use 2D-CNN/3D-CNN with a successive of fully

connected layers to predict the desired parameters θ in transformation Tθ.

2.2.1.4 From statistical alignment to loss functions

The last step is to define the loss function between the transformed source

point set Tθ(Si) and the target point set Gj. Due to the disorderliness of point

cloud, there is no direct corresponding relationship between these two point sets.

Therefore, a distance metric between two point sets instead of point/pixel-wise

loss used in image registration should be desired. Besides, the suitable metric

should be differentiable and efficient to compute. For 3D point set generation,

Fan et al. [36] first proposed Chamfer Distance loss, which is widely used in prac-

tice. Registration problem can be treated as statistical alignment between two

distributions of source and target point sets. We treat target point set as cen-

troids of a Gaussian Mixture Model and we fit the transformed source point set

as data into this GMM model so that we can maximize the likelihood of the GMM.
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Chamfer Distance (C.D.). Chamfer loss is a simple and effective metric to be

defined on two non-corresponding point sets. It dose not require the same num-

ber of points and in many tasks and it provides high quality results in practice.

We define the Chamfer loss on our transformed source point set Tθ(S) and target

points set G as:

LChamfer(Tθ(S),G|γ) =
∑

x∈Tθ(S)

min
y∈G
||x− y||22

+
∑
y∈G

min
x∈Tθ(S)

||x− y||22
(2.4)

where γ represents all the parameters in MLP layers and 2D-CNN layers from

section 2.2.1.1, 2.2.1.2 and 2.2.1.3. In experiments for PR-Net, we use Chamfer

Distance (C.D.) as evaluation metric.

Gaussian Mixture Model (GMM) loss. Let our source point set S = (x1,x2, ...,xN)

and transformed target point set Tθ(S) = (Tθ(x1), Tθ(x2), ..., Tθ(xN)). The tar-

get point set is G = (y1,y2, ...,yM) where xi and yi ∈ R2/R3 in this chap-

ter. We consider Gaussian-mixture model p(Tθ(xi)) =
∑M

m=1
1
M
p(Tθ(xi)|m) with

x|m ∼ N(ym, σ
2I2), where our target point set acts as the 2/3-dimensional cen-

troids of equally-weighted Gaussian mixture model. In general we want our pre-

dicted point set to maximally satisfy the Gaussian Mixture model. Therefore, we
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define the loss function (GMM loss) as :

LGMM(Tθ(S),G|γ) = −
∑
x∈S

log
∑
y∈G

e
− 1

2

∥∥∥Tθ(x)−y

σ

∥∥∥2
(2.5)

,where γ represents all the parameters in MLP layers and 2D-CNN layers from

section 2.2..1.1, 2.2.1.2, and 2.2.1.3. σ is the standard deviation in GMM. We set

σ to be identical for each Gaussian distribution in GMM. σ is a hyper-parameter

to choose in practice. Even though it is a constant for each input, we have more

sophisticated strategy for choosing it in practice as discussed in section 2.2.1.4.

We use GMM loss as our loss function for PR-Net.

2.2.1.5 Model settings

We train our network using batch data form training data set {(Si,Gi)|(Si,Gi) ∈

D}i=1,2,...,b. b is the batch size and is set to 16. For learning the shape descriptor

tensor in 2.2.1.1, the input is N × 4/N × 6 matrix and we use 4 MLP layers with

dimensions (16,32,64,128) and a Maxpool layer to convert it to a 128-dimensional

descriptor for each point in 11× 11 reference grid. For the shape correlation ten-

sor C discussed in 2.2.1.2 and 2.2.1.3, we use three 2D-CNN/3D-CNN layers with

kernel size (3,3),(4,4),(5,5) and dimension (128,256,512) with two successive fully

connected layers with dimensions (64, 18)/(512,81). Learning rate is set as 0.0001

with 0.995 exponential decay with Adam optimizer. We use leaky-ReLU [35] acti-

vation function and implement batch normalization [37] for every layer except the

output layer. We use deterministic annealing for the standard deviation σ which
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is initially set to 1, and for each step n we reduce it to
√

1/n until a margin value

of 0.1. Gradual reducing σ leads to a coarse-to-fine match. For outlier and missing

points case, we slightly increase the margin value to 0.12.

2.2.2 CPD-Net

We introduce our approach in the following sections. In section 2.2.2.1, our first

module is introduced for learning shape descriptor from a 2D/3D source/target

point sets. Section 2.2.2.2 illustrates coherent PointMorph module for learning the

smooth drifts to align the source point set with the target one. In section 2.2.2.3,

The definition of the loss function is provided. The model configurations and the

settings for training are described in section 2.2.2.4

2.2.2.1 Learning shape descriptor

For a given input point set, we firstly learn a shape descriptor that captures

representative and deformation-insensitive geometric features. Let (Si,Gj) denotes

the input source and target point sets and (LSi
,LGj

) denotes their shape descrip-

tor, where LSi
,LGj

⊂ Rm as shown in Figure 2.5. To address the problem of

irregular format of point set, we introduce the following encoding network, which

includes t successive multi-layer perceptrons (MLP) with ReLu activation function

{fi}i=1,2,...,t, such that: fi : Rwi → Rwi+1 , where wi is the input layer’s dimen-

sion and wi+1 is the output layer’s dimension. The encoder network is defined as:

∀(Si,Gj),

LSi
= Maxpool{ftft−1...f1(xi)}xi∈Si

(2.6)
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Figure 2.5: The schema of learning shape descriptor tensor process.

LGj
= Maxpool{ftft−1...f1(xi)}xi∈Gj

(2.7)

We use the Maxpool function to extract the order-invariant descriptors from

the input point sets. The readers can refer to PointNet [30] for detailed discussion.

One can also use other symmetric operators such as summation, average pooling

function and so on. This structure can be easily adapted for 3D point set inputs.

Other point signature learning architecture such as PointNet++ [38] can be easily

implemented here as well.

2.2.2.2 Coherent PointMorph architecture

For the next step, we define a PointMorph MLP (multi-layer perceptrons) ar-

chitecture for learning the coherent point drifts to move the source point set to-

wards alignment with the target one as shown in Figure 2.6. This architecture

includes successive multi-layer perceptrons (MLP) with ReLu activation function:

{gi}i=1,2,...,s, such that: gi : Rvi → Rvi+1 , where vi is the input layer’s dimension

and vi+1 is the output layer’s dimension. Therefore, ∀(Si,Gj),

dxi = gsgs−1...g1([xi,LSi
,LGj

]) (2.8)
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Si
′ = φ(Si) = {xi + dxi}xi∈Si

(2.9)

,where S′i is the transformed source point set and dxi represents the predicted

drift for each point xi ∈ Si. The notation [*,*] represents concatenation of vectors

in same domain. We should notice that due to the high non-linearity of neural

networks, there is no difficulty to minimize the similarity loss function between

S′ and G. However, the main challenge is to make sure the predicted drifts are

coherent [3]. The coherency of drifts is quite important for holding reasonable

correspondence and points interpolation for registering large scale point sets as

well. Most previous methods deal with this problem by adding a penalization term

on smoothness to trade-off target alignment loss for smoothness [34]. Our network

naturally predicts smooth drifts because (1) by formula (6), for any neighbor points

xk ∈ S, with concatenating two identical global descriptors, the inputs [xk,LS,LG]

should be very close to each other as input for function g. (2) Function g is a simple

linear combination with ReLu activation. This function is continuous and its first

derivative should be a constant almost everywhere. Based on the special function

g and our assumption, we have the following theorem.

Claim: For a single layer perceptron with ReLu activation function g, ∀xi,xj ∈

S, ∀ε > 0,∃δ > 0, such that ||xi − xj|| < ε =⇒ ||dxi − dxj|| < δ, where dxi is

defined as dxi = g([xi,LS,LG]) similarly in equation (6).

Proof in sketch. Since g is a linear function with ReLu activation and we as-

sume its weights w converges to w′ after training. ||xi − xj|| = ||[xi,LS,LG] −

[xj,LS,LG]|| since LS,LG are identical for each xi ∈ S. Since w′ is constant,

∃C > 0, s.t.||xi − xj|| > C||w′[xi,LS,LG] − w′[xj,LS,LG]||. Since function g

is continuous, if w′[xi,LS,LG] > 0, ∃δ1 > 0 such that ∀xi, if ||xi − xj|| <
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Figure 2.6: The schema of learning coherent PointMorph process.

δ1,w
′[xj,LS,LG] > 0. Similarly if w′[xi,LS,LG] 6 0, ∃δ2 > 0 such that ∀xj,

if ||xi − xj|| < δ2,w
′[xj,LS,LG] 6 0. Therefore, we pick δ = min(δ1, δ2, ε/C),

||dxi − dxj|| = ||g([xi,LS,LG])− g([xj,LS,LG])||

= ||max(w′[xi,LS,LG], 0)−max(w′[xj,LS,LG], 0)||

= max(||w′[xi,LS,LG]−w′[xj,LS,LG]||, 0)

< max(
1

C
||xi − xj||, 0)

< max(0, ε/C)

= ε/C

< δ

(2.10)

For each point xi ∈ S in the source point set, the weights in the PointMorph MLP

are shared cross all points. Moreover, the two shape descriptors are duplicated

for each point. Since our MLP layers are all continuous function, even though

the drifts depend on the two global descriptors, but this motion of deformation

is strictly limited by source points’ original geometric locations, which guarantees

the continuity of the drifts on each source point.
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2.2.2.3 Loss functions

In this part, we define the similarity measure between the transformed source

point set φ(Si) and the target point set Gj as both our loss function and evaluation

metric. For two point sets, due to the absence of the corresponding relationship

for each point, we cannot adopt the pixel-wise loss in image registration. Fan et al.

[36] first proposed Chamfer Distance (C.D.), which is widely used in practice. We

define the Chamfer loss on our transformed source point set S′ and target points

set G as:

L(S′,G|θ) =
∑
x∈S′

min
y∈G
||x− y||22

+
∑
y∈G

min
x∈S′
||x− y||22

(2.11)

where θ represents all the weights in the our network structure. Chamfer loss

(C.D.) is our main choice in this pater. For dataset in presence of outliers and

missing points noise, we use the following clipped Chamfer loss:

L(S′,G|θ) =
∑
x∈S′

max(min
y∈G
||x− y||22, c)

+
∑
y∈G

max(min
x∈S′
||x− y||22, c)

(2.12)

where c is a hyper-parameter to choose. In our experiment 3 of CPD-Net, we

choose c equal to 0.1.

2.2.2.4 Settings of CPD-Net

We train our network using batch data form training data set {(Si,Gi)|(Si,Gi) ∈

D}i=1,2,...,b. b is the batch size and is set to 16. As we explain in section 2.2.2.1,
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for learning the shape descriptor tensor, the input is N × 4/6 matrix and we use 5

MLP layers with dimensions (16, 64, 128, 256, 512) and a Maxpool layer to convert

it to a 512-dimensional descriptor. For learning the coherent PointMorph discussed

in 2.2.2.2, we use three layers MLP with dimension (256, 128, 2/3). We use ReLU

activation function and implement batch normalization [37] for every layer except

the output layer. Learning rate is set as 0.0001 with 0.995 exponential decay with

Adam optimizer. The model is trained on single Tesla K80 GPU.

2.3 Experimental Results

2.3.1 PR-Net

In this section, we implement a set of experiments to validate the performance of

our proposed PR-Net for non-rigid point set registration from different aspects (i.e.

accuracy and time). In section 1.3.1.1, we discuss how we prepare the experimental

dataset. In section 1.3.1.2, we compare PR-Net with non-learning based non-rigid

point set registration method. In section 1.3.1.3, we validate the robustness of

PR-Net against the different level of geometric deformation. In section 1.3.1.4, we

validate the robustness of PR-Net against the different types of noise. In section

1.3.1.5, we further verify that PR-Net can handle registration tasks for various

types of dataset.

2.3.1.1 Dataset preparation

The point cloud data is often featured with geometric structural variations with

presence of a variety of noise (e.g. outliers, missing points), which poses challenges

for point set registration. An effective registration solution should be robust to the
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presence of those noise to provide the desired geometric transformation. Therefore,

in order to assess PR-Net’s performance, we simulate the commonly recognized

noise to the raw point sets to prepare the experimental data. To prepare the geo-

metric structural variation, we randomly choose a certain number of samples from

the point set and use them as the controlling points of a thin plate spline (TPS)

transformation. A zero-mean Gaussian is superposed to each controlling point to

simulate a random drift from their original positions. The TPS is then applied to

synthesize the deformed point set with different level of structural variation. The

1/2 of standard deviation of the above mentioned Gaussian is used to measure

the deformation level. To prepare the position drift (P.D.) noise, we applied a

zero-mean Gaussian to each sample from the point set. The level of P.D. noise is

defined as the standard deviation of Gaussian. To prepare the data incompleteness

(D.I.) noise, we randomly remove a certain amount of points from the entire point

set. The level of D.I. noise is defined as ratio of the eliminated points and the

entire set. To prepare the data outlier (D.O.) noise, we randomly add a certain

amount of points generated by a zero-mean Gaussian to the point set. The level

of D.O. noise is defined as the ratio of the added points to the entire point set.

For all tests, we use the Chamfer Distance (C.D.) between a pair of point sets to

provide a quantitative score to evaluate the registration performance.

2.3.1.2 Comparison to Non-learning based Approach

Different from previous efforts, the proposed PR-Net is a learning-based non-

rigid point set registration method, which can learn the registration pattern to

directly predict the non-parametric geometric transformation for the point sets

alignment. As a learning-based approach to predict the non-rigid registration, it
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Methods CD Time
CPD (Train) [3] 0.0038± 0.0031 ∼ 12 hours
PR-Net (Train) 0.0037±0.0014 ∼ 13 minutes
CPD (test) [3] 0.0038±0.0032 ∼ 12 hours
PR-Net (Test) 0.0044±0.0016 ∼ 8 seconds

Table 2.1: Performance comparison with CPD for registering 10k pairs of point
sets at deformation level 0.5.

is not applicable to have a direct comparison between PR-Net and other existing

non-rigid iterative registration methods. To compare our method to non-learning

based iterative method (i.e. Coherent Point Drift (CPD) [3]), we design the ex-

periment as follows to assess both time and accuracy performance.

Experimental Setup: We conduct tests to compare PR-Net with the non-

learning based approach. Coherent Point Drifts (CPD)[3] is a highly recognized

non-rigid point set registration method. In this test, we synthesize 2D deformed

fish data with deformation level of 0.5 to prepare 10k training dataset and 10k

testing dataset. Our PR-Net is firstly trained before applied to the 10k testing

dataset. The CPD is directly applied to the 10k testing dataset.

Result: We list the experimental result in the table 2.1. The second column

shows the mean and standard deviation of all 10k C.D. after registration. The

third column shows the time used for registering the 10k pairs of point sets. As

we expect, after training PR-Net can perform the real-time non-rigid point set

registration. The time used to register 10k pairs of point sets is around 8 seconds,

which is order of magnitude less than the time (12 hours) consumed by CPD for

point set registration of the entire 10k dataset. This is because of the fact that CPD
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needs to repeatedly start over a new iterative process for a new pair of point sets.

PR-Net clearly gains advantage over the non-learning based method by providing

a faster solution to non-rigid point registration. We also want to note that it takes

around 13 minutes to train our PR-Net on the 10k dataset with a comparative

performance, which is also significantly less than 22 hours used by CPD.

In addition to the efficiency (registration speed), we are also interested in the

effectiveness that indicates how well PR-Net can generalize from training data

to directly predict the desired geometric transformation for non-rigid point set

registration. The comparative training and testing C.D. results are listed on the

second column. The small difference between training and testing C.D. indicates a

comparative small performance degradation from training to testing. Furthermore,

we notice that C.D. of PR-Net has a smaller standard deviation than that of CPD,

which suggests that PR-Net can provide a more stable registration as it obtains

generalization ability to adapt properly to previously unseen data. In contrast,

the CPD treats every new pair of point sets independently and has to repeatedly

register them from the start.

2.3.1.3 Robust to Geometric Deformation

In this experiment, we take a detailed investigation on how well the PR-Net

performs point set registration for 2D shapes at different deformation levels. This

experiment shows a basic assessment of our model’s performance and capacity for

registering unseen highly deformed testing shapes.

Experimental Setup: We conduct tests to verify how well PR-Net performs on

the data with different levels of geometric deformation. In this test, we synthesize
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Deform. Level Chamfer Distance
0.2 0.0013±0.0005
0.3 0.0019±0.0008
0.8 0.0161±0.0057
1.0 0.0153±0.0052
1.5 0.1267±0.0872

Table 2.2: Quantitative testing performance for 2D fish shape point set registration
at different deformation level (Deform. Level)

2D deformed fish data with deformation levels from 0.3 to 1.5 to cover a good range

of shape structural variation. The deformed 2D fish shapes are shown in Figure

2.7. For each level of deformation, we simulate 20k point sets as target point sets

for training and simulate additional 10k point sets for testing. The quantitative

result is shown in Table 2.2.

Result: After training, the PR-Net is applied to register testing datasets with

different deformation levels. The quantitative experimental results are listed in

Table 2.2. The second column lists the C.D. scores for a registered pair of source

and target point sets with different deformation levels. As we can see from the

evaluation, PR-Net can achieve impressive performance on non-rigid point set reg-

istration when the deformation level is less than 1.0 and the Chamfer Distance

remains as low as 0.0153 as shown in Table 2.2. However when the deformation

level reaches 1.5, there is a huge jump of C.D. from 0.0153 to 0.1267. This indi-

cates that our model’s registration capacity dose have a clear upper bond. Once

the deformation level reaches or higher than this upper bond, the performance of

PR-Net can be dramatically reduced. We further check the qualitative results for

better understanding PR-Net’s performance.
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Figure 2.7: Testing results for 2D fish shape point set registration at different
deformation levels. The deformation level increases from 0.3 to 1.5 from left to
right. The presented shapes are randomly selected from same testing batch. The
blue shapes are source point sets and the red shapes are target point sets. Please
zoom-in for better visualization.
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The corresponding qualitative results are demonstrated in Figure 2.7, which

illustrates the pairs of point sets before and after registration. From the Figure

2.7, we can clearly see that the transformed source point set (in blue color) struc-

turally aligns well with the target point set (in red color), which verifies PR-Net’s

registration capacity. Especially when deformation level is equal or less then 1.0,

as shown in 2.7, PR-Net almost perfectly aligns the source and target point sets.

As we mentioned before, when the deformation level reaches 1.5, the quantitative

result experiences a dramatic drop. As displayed in Figure 2.7, for this defor-

mation level 1.5, the geometric structure of 2D fish is significantly deteriorated,

which poses much more challenges in determining the desired geometric transfor-

mation. Even for human beings, it is hard to tell the geometric meaning of the

target point sets (Red shapes in Figure 2.7). But this also indicates that TPS, as

a parametric geometric transformation model, might be limited in modeling the

large structural variation in our test. We further investigate more complex geomet-

ric transformation model or model-free geometric transformation in our separate

research reports.

2.3.1.4 Robust to Data Noise

While using the sensors such as LIDAR sensor and laser scanner, it is unavoid-

able that the data might be acquired with a variety types of noises. An effective

non-rigid registration method should be robust to those noise in addition to the

structural variations as discussed in previous section. Therefore, in this section,

we focus on testing how well PR-Net can predict the non-rigid registration from

the noisy dataset.

42



www.manaraa.com

P.D. Level C.D. D.O. Level C.D. D.I. Level C.D.
0.05 0.0052±0.0009 0.05 0.003±0.001 0.05 0.0134±0.0038
0.08 0.0074±0.001 0.15 0.0033±0.001 0.2 0.0147±0.0053
0.1 0.0093±0.0012 0.25 0.0088±0.0029 0.3 0.0154±0.0053
0.15 0.0145±0.002 0.3 0.0103±0.003 0.45 0.0178±0.0053
0.2 0.0204±0.0029 0.5 0.0195±0.0061 0.6 0.021±0.0067

Table 2.3: Quantitative testing performance for 2D fish shape point set registration
at different deformation level 0.5 in presence of various noise such as Point Drift
(P.D) noise, Data Outlier (D.O.) noise, and Data Incompleteness (D.I.) noise.

Experimental Setup: In this experiment, we carry out a set of tests to validate

PR-Net’s performance against different types of data noise including P.D. noise,

D.I. noise, and D.O. noise. We simulate the noisy data through introducing three

types of noise with five different levels to the target point set at deformation level

of 0.5. The level of noise is defined in the section of data preparation. The Figure

2.8 illustrates the noisy target point set (in red color) in contrast to the source

point set (in blue color). The quantitative result is demonstrated in Table 2.3.

Result: Figure 2.7 demonstrates the PR-Net’s performance with clean data for

comparison. Given the source point set (in red color) and target point set (in blue

color), PR-Net succeeds in transforming source point set to align with the target

one for the clean data.

For investigating PR-Net’s performance on noise data, in Figure 2.8 (A), we

apply D.I. noise to target point set by increasingly removing point samples as

shown from left to right in a row. The registration results show that our PR-Net

is capable of robustly aligning the source point set (red) with target (blue) in this

condition. Even for the situation when D.I. noise level is 0.6 and the majority of

target shape is missing, PR-Net can still align the remaining parts such as the top
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Figure 2.8: Testing results for 2D fish shape point set registration at deforma-
tion level 0.5 in presence of various noise. (A) Performance in presence of Data
Incompleteness (D.I.) noise. (B) Performance in presence of Point Drift (P.D.)
noise. (C) Performance in presence of Data Outlier (D.O.) noise. Blue shapes are
source point sets and red ones are target point sets. Please zoom-in for better
visualization.
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and tail of the target fish. An interesting observation is that for the missing parts,

even without any target information, the transformed source point sets seem to be

natural and preserve the original geometric meaning. For example when the D.I.

level reaches 0.6, the transformed source point sets not only match the targets, but

the shape in general still has the geometric meaning for the missing parts and it

can be easily recognized as a “fish” shape. As shown in Table 2.3, the quantitative

result shows that C.D. linearly increases when D.I. Level increases from 0.05 to

0.6, which indicates PR-Net’s high resistance to D.I. Noise.

The D.O. noises is added to target point set in Figure 2.8 (C) as shown from

left to right in a row. The registration result demonstrates that the alignment

between the source and target shapes is not significantly affected by outlier points

in target set when the D.O. noise level is less than 0.3. The quantitative results

show that the C.D. of registered pairs remain as low as 0.0103 when the D.O noise

level is 0.3. However, when the D.O. noise level reaches as high as 0.5 the C.D. of

registered pairs jumps from 0.0103 to 0.0195, which indicates that PR-Net starts

suffering dramatic performance degradation affected by the large amount of added

outliers.

2.3.1.5 Results on Data Variety

In this experiment, we take a further step to investigate how well the PR-Net

performs point set registration for other 2D/3D shapes at different deformation

levels. We are especially interested in point set registration of non-contour based

2D shapes, as well as 3D shapes since the 3D data have been gaining great atten-

tion in community with recent advancements in 3D acquisition and computation

resources.
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Deform. Level 0.3 0.5 0.8 1.0
Hand 0.0013±0.0006 0.0025±0.0013 0.0056±0.0025 0.0105±0.0047
Skeleton 0.0012±0.0005 0.0022±0.0010 0.0081±0.0049 0.0087±0.0047
Skull 0.0017±0.0008 0.0029±0.0011 0.0052±0.0022 0.01±0.0036

Table 2.4: Quantitative testing performance for skull, hand, and skeleton 2D
shapes at different deformation level from 0.3 to 1.0.

Experimental Setup: We further conduct tests to verify how well PR-Net per-

forms on the dataset of various shapes and patterns, such as skeleton, skull, hand,

face (3D shape) and cat (3D shape). For each type of dataset, with different levels

of geometric deformation, we simulate 20k point sets as target point sets for train-

ing and simulate additional 10k point sets for testing. For 3D shapes, we randomly

sample points from the mesh data set. While we training PR-Net on 3D shapes,

we only sample 512 out of 20K points from an input 3D model and 125(5× 5× 5)

controlling points for learning descriptor tensor and correlation tensor, which al-

ready provided reasonable registration. Due to the computation complexity, there

is a clear trade-off between performance with computation efficiency. We randomly

select a few samples at deformation level of 0.5 to visualize the alignment result in

Figure 2.9 and Figure 2.10. We present the quantitative evaluation of registration

in Table 2.4, which presents the mean and standard deviation of C.D. between

registered pairs.

In Figure 2.8 (B), we apply P.D. noise to target point set by increasingly adding

Gaussian noise as shown from left to right in a row. As shown in Figure 2.8, though

the positions of target point sets are dramatically drifted by Gaussian noise, our

PR-Net still effectively predicts the desired geometric transformation. Especially

when the P.D. noise level is higher than 0.15, even though the boundary of the fish
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Figure 2.9: Testing performance for skull, hand and human skeleton shapes.Blue
shapes are source point sets and red ones are target point sets. Please zoom-in
for better visualization. The corresponding C.D. for each input and output pair is
presented below it.
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Figure 2.10: Testing registration performance for 3D face and cat point sets. The
blue shapes are source shapes and the red shapes are target ones. We plot the
mesh of shapes for better visualization.

shape is dramatically drifted, the transformed source shapes have smooth bound-

ary and acceptable alignment with the target ones. From the quantitative results,

as shown in Table 2.3, the C.D. of registered pairs is less than 0.01 when the

P.D. noise level is under 0.15, which indicates almost perfect alignment. Result:

PR-Net demonstrates robust registration performance for various categories of 2D

shapes (e.g. skull, skeleton and hand), based on the selected examples from the

testing dataset are demonstrated in Figure 2.9 and the corresponding quantitative

testing results for comparison of these three different shapes are shown in Table

2.4. The decreasement in C.D. values from pre to post registration suggests that

PR-Net can successfully align deformable pairs of various shapes. As shown in Fig-

ure 2.9, for the current deformation level 0.5, PR-Net shows robust performance

regarding to different shapes. There is no obvious difference among the registration

results of them. When zooming in for a more detailed observation, the missing

registration part can still be noticed such as the upper line of the skull in row

2. As shown in Table 2.4, for comparing the quantitative results on these three

shapes, the result on Skull Shape is slightly worse than other two shapes when
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deformation level is low. But for higher deformation level, the performance on

Skull shape becomes comparative to other two shapes. This validates the robust

performance of PR-Net towards non-rigid point set registration over a variety of

shapes in presence of different geometric deformation level. In Figure 2.10, we

demonstrate that PR-Net is applicable for 3D point set registration. As shown

in Figure 2.10, for the general part of the target shape, our model can correctly

predict the registration transformation to align them. As to aligning the more

subtle part of source and target point sets, there is still space to improve PR-Net’s

performance. The straightforward method to improve the performance is to in-

crease the number of sampling points from surface and as well as the controlling

points for learning the shape descriptor tensor with acceptable computation cost.

The comparison result across different categories of shapes indicates the consistent

performance of PR-Net.

2.3.2 CPD-Net

In this section, we carry out a set of experiments for non-rigid point set regis-

tration and assess the performance of our proposed CPD-Net. In section 1.3.2.1,

we describe the details of datasets that are used for training and testing of CPD-

Net. We report the experimental results to evaluate the performance of our trained

CPD-Net on 2D and 3D datasets in section 1.3.2.2 and 1.3.2.3. Section 1.3.2.4 dis-

cusses the resistance of CPD-Net to various types of noise. In section 1.3.2.5, we

compare CPD-Net with non-learning based method.
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2.3.2.1 Experimental Dataset

A variety of different 2D and 3D shapes (i.e examples shown in Figure 2.11,

Figure 2.14, and Figure 2.15) are used in the experiments to train and test the

CPD-Net. In experiments, we prepare the dataset as follows:

• To prepare the deformable shape dataset (as shown in the first column row

of Figure 2.11), we simulate non-rigid geometric transformation on the nor-

malized raw point sets by thin plate spline (TPS) [21] transformation with

different deformation levels. The deformation level is defined as the perturb-

ing degree of controlling points in TPS. Specifically, given the deformation

level set at l (e.g. 0.5), a Gaussian random shift with zero-mean and 2l

standard deviation is generated to perturb the controlling points.

• To prepare the Gaussian Displacement (G.D.) noise dataset (as shown in the

first row of Figure 2.17), we simulate the random displacement superimposed

on a deformed point set (deformation level at 0.5) by applying an increasing

intensity of zero-mean Gaussian noise. The G.D. noise level is defined using

the standard deviation of Gaussian.

• To prepare the Point Outlier (P.O.) noise for the shape (as shown in the

second row of Figure 2.17), we simulate the outliers on the deformed point

set (deformation level at 0.5) by adding an increasing number of Gaussian

outliers. The P.O. noise level is defined as a ratio of Gaussian outliers and

the entire target point set.

• To prepare the Data Incompleteness (D.I.) noise (as shown in the second row

of Figure 2.17), we remove an increasing number of neighbouring points from
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target point set (deformation level at 0.5). The D.I. noise level is defined as

the percentage of the points removed from the entire target point set.

2.3.2.2 2D non-rigid point set registration

CPD-Net can generalize from training towards the prediction of geometric

transformation for aligning unseen testing point sets in an unsupervised fashion. In

this experimental section, we demonstrate the point set registration performance

of the CPD-Net on various categories of 2D shapes at different deformation levels.

Experiment Setting: In this experiment, we use four different type of 2D shapes

(i.e. fork, face.) to prepare the dataset. For each shape, we first synthesize a set of

20k deformed shapes at each deformation level. The deformation level ranges from

0.3 to 2.0. To prepare the training dataset, for each type of shape at each defor-

mation level, we split synthesized dataset into two groups. We randomly choose a

pair of shapes from group one to form 20k pairs of training. Similarly, we randomly

choose two shapes from the other synthesized dataset to form 10k testing pairs.

Note that there is no intersection between training and testing datasets. To eval-

uate the registration performance, we use the Chamfer Distance (C.D.) between

the transformed source point set and target one as quantitative assessment, and

we visualize the pairwise point sets before and after registration for qualitative

assessment. We conduct two tests based on the shapes we used in the test. For

test one, we use the commonly adopted fish shape, and in test two, we use other

2D shape categories, such mushroom, face, and fork, to assess CPD-Net’s perfor-

mance, particularly on the non contour-based shapes.
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Figure 2.11: The qualitative registration result for Fish shape at different defor-
mation level. The blue shape is target point set. The red shape is source point set.
The black lines are predicted coherent drifts for source point set. Please zoom-in
for better visualization.
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Figure 2.12: The testing qualitative registration results for Fish shape at different
deformation level. The blue shape is target point set. The red shape is source
point set. Please zoom-in for better visualization.

53



www.manaraa.com

Results of Test 1: After training CPD-Net, we applied the trained model to

testing dataset prepared as described above. In Figure 2.11, the first column il-

lustrates the pair of source point set and target one before registration, where red

shape denotes source point set and blue one denotes the target set. The second

column illustrates the predicted drift vectors (depicted by the black arrow) by our

trained CPD-Net for each point in source point set. The third column is zoom-

in view of predicted drift vectors in a focused region. The fourth column shows

the registered pairs of transformed source set and target one after registration.

Shapes from different rows have different deformation levels from 0.1 to 1.5. From

the fourth column, we can observe that CPD-Net can predict nearly perfect reg-

istration when the deformation level is smaller than 0.9. While we increase the

deformation to the level greater than 1.5, the source and target point sets have

significant shape structural variation, which dramatically increase the difficulty of

point set registration. However, CPD-Net can still reliably transform the source

point set to align the main portion of the shape of the target point set. In addition,

it is interesting to observe from the second and third columns that source point

set moves coherently as a whole towards the target one. This observation verifies

that CPD-Net is able to predict a continuous smooth displacement field without

necessity to impose additional coherence constraint term. We further provide the

mean and standard deviation of C.D. calculated from the 10K testing pairs at

each deformation level for quantitative evaluation. In the Figure 2.13, we plot the

mean and standard deviation for the set of C.D. between the source point set and

the target one at all deformation levels. We can see from the comparison that the

red curve (post registration) is consistently below the blue one (pre registration),

which indicates CPD-Net is able to robustly register the source and target point
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Figure 2.13: The C.D. between source and target point sets, pre (blue line) and
post (red line) registration.

Def. level 0.3 0.5 0.7

Fish 0.0008±0.0004 0.0037±0.0009 0.0072±0.0022
Mushroom 0.0006±0.0003 0.0031±0.0009 0.0051±0.00184

Fork 0.0002±0.0001 0.0014±0.0011 0.0038±0.0019
Face (2D) 0.0005±0.0003 0.0028±0.0011 0.0053±0.0017
Def. level 1.2 1.5 2.0

Fish 0.0178±0.0069 0.0239±0.0096 0.037±0.016
Mushroom 0.0103±0.0045 0.0129±0.0058 0.0196±0.0094

Fork 0.0089±0.0048 0.0126±0.0074 0.0203±0.0127
Face (2D) 0.0114±0.0049 0.0158±0.0074 0.0213±0.01

Table 2.5: Quantitative testing performance for 2D point set registration.

set with a small C.D. Moreover, the red curve stays nearly flat as the deformation

increases from 0.1 to 2.0, which indicates that CPD-Net’s robust performance at

high deformation level. The detailed qualitative result is presented in Table 2.5.

Results of Test 2: In this test, we further use CPD-Net to perform the non-

rigid registration on other three types of 2D shapes including Mushroom, Fork,

and Face shapes as shown in Figure 2.14. To visualize the registration result, we

compare the pair of testing shapes before and after registration at deformation level

0.5 as shown in Figure 2.14. All randomly selected samples show nearly perfect
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Figure 2.14: Registration examples for Mushroom, Fork and Face shapes. The
blue shape represents target and the red shape represents source point set. The
corresponding C.D. score is listed underneath the registered point sets.

registration. Similar to test 1, we present quantitative evaluation using C.D. metric

for the non-rigid registration of those three types of shapes in the Table 2.5. Each

row contains the mean and standard deviation of C.D. measurement for all testing

pairs of shapes at deformation level from 0.3 to 2.0. Based on the quantitative

results shown in the Figure 2.13, for all the four shapes, CPD-Net demonstrates

the remarkable performance of non-rigid registration as evidenced by the fact that

the C.D. is dramatically reduced and consistently stays low after alignment at all

deformation levels.Especially after the deformation level increases to 1.5 when the

shape structure has been dramatically deteriorated (as shown on the last row of

Figure 2.13).

2.3.2.3 3D non-rigid point set registration

In this experiment, we take a further step to investigate how well the CPD-Net

performs 3D point set registration at different deformation levels since the 3D data

have been gaining great attention in community with recent advancements in 3D

56



www.manaraa.com

Figure 2.15: The charts show C.D. between source and target point sets, pre (blue
line) and post (red line) registration in left. Selected qualitative registration results
are demonstrated in right. The red points represents the source points and the
blue ones represent the target points. The black lines represent the predicted drifts
for source point set. Please zoom-in for better visualization.

acquisition and computation resources.

Experimental Setting: In this experiment, we use two categories of 3D shapes

(i.e. 3D Face and 3D Cat) to prepare the dataset. Similar to 2D data preparation,

we synthesize 10k training pairs of 3D shapes and 2k testing pairs for both 3D

Face and Cat shapes at various deformation levels (0.3, 0.5, 0.8, and 1.2). We use

the same measurement methods for both qualitative and quantitative results (as

shown in Figure 2.15).

Result: In Figure 2.15, we illustrate the quantitative evaluation curves on the

left and visualize one registration cases at deformation level 0.3 on the right. For

both 3D cat and face shapes, CPD-Net demonstrates impressive performance with
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Figure 2.16: The testing qualitative registration results for 3D shapes at different
deformation level. The red points represents the source points and the blue ones
represent the target points. Please zoom-in for better visualization.
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a quite small pairwise C.D. after registration, and the C.D. measurement remains

consistently low while we increase the deformation level. At the level of 1.2, the

mean of C.D. between source and target point sets is nearly 10 times less after

alignment, which indicates that the trained CPD-Net is able to align most portion

of the shapes between a source and target point sets. To further visualize the

registration performance, on the right side of Figure 2.15, we show the registra-

tion results by plotting the figures for 3D source and target point sets, pre and

post registration in first and third columns and the second column depicts the

predicted coherent point drift vector. In the Figure, the first column depicts the

shape pair prior to registration, the second column depicts the coherent point drift

vector for each point on the source point set, the third column depicts the shape

pair after registration, and the remain column show the mesh surface for the 3D

shapes for better visualization effects. Those plots clearly prove that CPD-Net

is able to predict an accurate smooth non-rigid transformation. The registration

performance is particularly impressive to find the accurate non-rigid registration

after the deformation level is greater than l = 0.8, when the 3D structure of the

shape objects are significantly deteriorated to a degree that human has hard time

to register the pair of 3D objects.

2.3.2.4 Resistance to Noise

While using the sensors such as LIDAR sensor and laser scanner, it is unavoid-

able that the data might be acquired with a variety types of noises. An effective

non-rigid registration method should be robust to those noise in addition to the

structural variations as discussed in previous section. Therefore, in this section,

we focus on testing how well CPD-Net can predict the non-rigid registration from
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the noisy dataset.

Experimental Setting: In this section, we use fish shape data at deformation

level of 0.5 to prepare the experimental noisy dataset. We simulate three types

of noise (i.e. Gaussian Displacement (G.D.) noise, Point Outlier (P.O.) noise and

Data Incompleteness (D.I.) noise). For each type, we gradually increase the level

of noise added to the deformed target point set of fish dataset as shown in Figure

2.17). We prepare 10k pairs of source and target point sets for each type of noise

for testing. As in previous section, the same quantitative and qualitative perfor-

mance measurement is used in this experiment.

Result: In this section, we illustrate the experimental result using the C.D. as the

quantitative metric, and plot one pair of source and target point sets at different

noise level, pre and post registration. All experimental results are listed in Figure

2.17. As shown in the Figure 2.17, we plot the quantitative evaluation curves on

the left and visualize five registration cases at different noise level on the right.

For the clean data, the mean of C.D. for the fish shape at deformation level of

0.5 is around 0.08. We need to validate if CPD-Net can significantly reduce the

C.D. for pairs of source and target point sets of noisy dataset after registration,

and if CPD-Net consistently keep the C.D. comparatively low when the noise level

increases.

For the G.D. noise, in the Figure 2.17 the first row depicts the registration by

our CPD-Net for the G.D. noise corrupted data. As we notice the plot, the C.D.

after registration remains constantly lower than 0.08, even when the G.D. noise

increases to the level of 0.2. CPD-Net can still predict the non-rigid transforma-

60



www.manaraa.com

Figure 2.17: The charts of C.D. between transformed source point set and target
one in presence of different level of G.D. noise, P.O. noise and D.I.noise are shown
in left. The selected qualitative results are demonstrated in right. The red shape
represents the source point set and the blue one represents the target point set.
Please zoom-in for better visualization.
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tion to align the source set (the red points) to the target one (the blue points)

with a relatively small C.D. between two point sets, even though the shape was

dramatically altered by the Gaussian Displacement noise. The shape was dramat-

ically altered by the Gaussian noise which makes it difficult to recognize overall

shape as a fish. However, our CPD-Net can still predict the non-rigid registration

to align the source set (the red points) to the target one (the blue points) with

a relatively small C.D. between two point sets. For the P.O. noise, as shown in

the second row, outlier points is increasingly added to the target point set (blue

ones) from left to right in a row. Different from the P.O. noise, we would like to

check if CPD-Net is able to successfully ignore those outlier points to contribute

the registration process. The registration result is impressive that the main body

of the source and target shapes can robustly aligned to each other with a small

C.D. between them after registration, especially when the P.O. noise level reaches

as high as 0.3. For D.I. noise, as shown in the third row, an increasing number

of points is removed from the target point set (blue ones) to check if CPD-Net

is able to successfully align the source point set to the incomplete portion of the

target one. The visualization of pairwise registration result in the third row clearly

demonstrates that CPD-Net is able to robustly align the source point set (red) to

the incomplete target point set (blue). When D.I. noise level reaches 0.25, the

missing part is aligned with a straight line, which is less desired. But the aligned

portions from transformed source point set and target one show consistent com-

mon geometric structure, which is not affected by the missing portion of the target

point set.
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Methods CD Time

CPD [3] (Train) 0.0039±0.0032 ∼ 22 hours
Ours (Train) 0.0035±0.0008 ∼ 25 minutes

CPD [3] (Test) 0.0039±0.0033 ∼ 22 hours
Ours (Test) 0.0037±0.0009 ∼ 15 seconds

Table 2.6: Performance and Time comparison with CPD.

2.3.2.5 Comparison to CPD

Different from previous efforts, the proposed CPD-Net is a learning-based non-

rigid point set registration method, which can learn the registration pattern to

directly predict the non-parametric geometric transformation for the point sets

alignment. As a learning-based approach to predict the non-rigid registration, it

is not applicable to have a direct comparison between CPD-Net and other existing

non-rigid iterative registration methods. To compare our method to non-learning

based iterative method (i.e. Coherent Point Drift (CPD) [3]), we design the ex-

periment as follows to assess both time and accuracy performance.

Experimental Setting: In this experiment, we use the fish shape at deformation

level of 0.5 to prepare the dateset. We synthesize 20k pairwise source and target

point sets to form the training set, and another 20k pairs to form the testing set.

The CPD-Net is firstly trained with the 20k training dataset. The trained CPD-

Net is then applied to directly predict registration for the 20k testing dataset. In

contrast, CPD is directly applied to both 20k training and testing dataset.

Result: The C.D. based quantitative comparison is presented in the Table 2.6.

The first and third row list the experimental results for CPD on training and
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testing dataset respectively. The second row lists the results for the CPD-Net

on training dataset, and the fourth row lists the results for the trained CPD-

Net on the testing dataset. Based on the comparison between first and third

rows, we can see that our model can achieve better performance (i.e. smaller

C.D.) than that of CPD within a shorter time (25 minutes versus 22 hours) to

align 20k pairs. Unlike the CPD needs to start over a new iterative optimization

process to register a new pair of shapes independently, CPD-Net actively learns the

registration pattern from training and consequently become capable of handling

real-time point set registration or a large volume dataset by direct predicting the

geometric transformation. As shown on second and fourth row of the Table 2.5,

we notice that the trained CPD-Net is able to achieve nearly the same training

performance, which indicates that CPD-Net has great generalization capability.

The trained CPD-Net is able to achieve better performance than CPD on the

same dataset with orders of magnitude less time (15 seconds versus 22 hours).
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Chapter 3

Learning-based Point

Correspondence Networks

(This chapter is submitted as paper “PC-Net: Unsupervised Point Correspon-

dence Learning withNeural Networks” with Dr.Xiang Li et al. as co-authors under

review.)
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Figure 3.1: Illustration of our unsupervised point correspondence. Our model drifts
all landmark points of a template circle to match the corresponding positions of
target shapes.

In this chapter, we introduce our next network PC-Net for unsupervised point

correspondence. Point sets correspondence concerns with the establishment of

point-wise correspondence for a group of 2D or 3D point sets with similar shape

description as shown in Fig 3.1. Existing methods often iteratively search for the

optimal point-wise correspondence assignment for two sets of points, driven by

maximizing the similarity between two sets of explicitly designed point features

or by determining the parametric transformation for the best alignment between

two point sets. In contrast, without depending on the explicit definitions of point

features or transformation, this chapter introduces a novel point correspondence

neural networks (PC-Net) that is able to learn and predict the point correspon-

dence among the populations of a specific object (e.g. fish, human, chair, etc) in

an unsupervised manner. Specifically, in this chapter, we first develop an encoder

to learn the shape descriptor from a point set that captures essential global and

deformation-insensitive geometric properties. Then followed with a novel motion-

driven process, our PC-Net drives a template shape, that consists of a set of land-

mark points, morph and conform around a target shape object which is recon-
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structed through decoding the previously characterized shape descriptor. As a

result, the motion-driven process progressively and coherently drifts all landmark

points from the template shape to corresponding positions on the target object

shape. The experimental results demonstrate that PC-Net can establish robust

unsupervised point correspondence over a group of deformable object shapes in

the presence of geometric noise and missing points. More importantly, with great

generalization capability, PC-Net is capable of instantly predicting group point

corresponding for unseen point sets.

Figure 3.2 illustrates pipeline of the proposed PC-Net which is composed of

four main components. The first component is “learning global shape descriptor“.

In this component, the global shape descriptor is learned with a deep neural net-

work to capture global geometric properties. The second component is “forming

shape morphing initiator”. In this component, a circle or sphere is selected as a

template shape that consists of a set of landmark points (i.e. points preserving

correspondence between the object and its population). The shape morphing ini-

tiator is vector array with each element represented as a vector concatenation of

the coordinate of each landmark point with the global shape descriptor. The third

component is “Motion-driven Embedding”. In this component, landmarks of a

template shape morph and conform towards the target shape, guided by the previ-

ously characterized shape descriptor. As a result, all landmarks are progressively

and coherently drifted from the template shape to corresponding positions on the

target shape. In the last component, we map the correspondence of reconstructed

landmarks back to the original point sets. Accordingly, the main components of

the pipeline indicate the main contributions of our proposed PC-Net. We pro-

pose a novel concept of “shape morphing initiator” that is a representation of
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a combination of landmark coordinates and learned shape descriptors, which in-

troduces a topology constraint of landmarks on learned shape descriptors. We

propose a “motion-driven embedding” module. This unsupervised self-morphing

process progressively and coherently drifts all landmark points from the template

shape to corresponding positions on the target object shape without using ground

truth labels. We introduce a novel learning-based point correspondence paradigm

which can establish the point correspondence among two or more groups of point

sets.With generalization ability, PC-Net is able to directly predict the point cor-

respondence on the testing dataset without a new iterative searching process.

3.1 Methods

In this section, we introduce our method for unsupervised point correspondence.

The overall framework is illustrated in Figure 3.2. In Section 3.1.1, we state the

unsupervised learning-based correspondence problem. Section 3.1.2 introduces our

reconstruction structure of four successive parts: learning shape descriptor, formu-

lating shape morphing initiator, motion-driven embedding process and the loss

function. In section 3.1.3, we illustrate the correspondence mapping process from

reconstructed shapes to input shapes.

3.1.1 Problem statement

Prior to the detail discussion of our approach, we first formally define the point

correspondence task as follow. Given a set of point clouds P = {P1, ...,Pn}n≥2.

Pi = {xi
1, ...,x

i
M,y

i
1, ...,y

i
Ni
}, is a point set in P, where xi

j,y
i
t ∈ Rn (n = 2 or n = 3

). ∀Pi ∈ P, we assume that there exists a subset Ci = {xi
1, ...,x

i
M} ⊂ Pi which
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Figure 3.2: The pipeline of proposed PC-Net model. The pipeline mainly includes
four parts. The first part is an encoder to learn the “global shape descriptor”
from a point set that captures essential global and deformation-insensitive geo-
metric properties. The second part is forming “shape morphing initiator” and the
third component is “Motion-driven Embedding” for reconstruction. The fourth
component is “Point Correspondence Mapping” to map the correspondence of re-
constructed landmarks back to the original point sets.
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includes all corresponding points in P. Our task is to match all the corresponding

point sets {Ck|Ck ⊂ Pk} . In other words, ∀xk
j ∈ Ck, we assume that there exists

a learning structure M such that, ∀Ci(i 6= k) ,

xi
j =Mγ(x

k
j ,Ci|γ,D) (3.1)

, where D ⊂ P is a given training dataset; γ represents all the parameters; xi
j ∈

Ci is a corresponding point to xk
j . Therefore, for the point xk

j , we have all its

predicted corresponding points in the set {x1
j , ...,x

m
j |xi

j ∈ Pi}. For unsupervised

learning model, we do not use the ground truth corresponding information during

the training process.

3.1.2 Reconstruction pipeline

In this section, we introduce the reconstruction pipeline of our model to embed

a template of landmarks to reconstruct the input shape. This process is the key

part for correspondence prediction, which includes four modules: learning shape

descriptor, formulating shape morphing initiator, motion-driven embedding pro-

cess and Chamfer loss.

Learning shape descriptor. For a given input point set, we first learn a shape

descriptor that captures representative and deformation-insensitive geometric fea-

tures. Let Pi ∈ P denotes the input point sets and Li ∈ Rm denotes the shape

descriptor learned from the input Pi. To address the problem of irregular format

of point set, we introduce the following encoding network F1, which includes three

successive multi-layer perceptrons (MLP) f1, f2 and f3, such that: f1 : R2 → R64,

70



www.manaraa.com

f2 : R64 → R128, f3 : R128 → R512. The encoder network F1 is defined as: ∀Pi ∈ P,

F1(Pi) = Maxpool{f3f2f1(xi)}xi∈Pi
(3.2)

We use the Maxpool function to extract the order-invariant descriptors from the

input point set. The readers can refer to PointNet [30] for detailed discussion.

One can also use other symmetric operators such as summation, average pooling

function and so on. This structure can be easily adapted for 3D point set inputs.

Other point signature learning architecture such as PointNet++ [38] can be easily

implemented in our model as well.

Shape morphing initiator. In this part, our shape morphing initiator is formu-

lated as a combination of landmark coordinates and learned shape descriptors. We

use a circle/spherical surface as a template of landmarks for 2D/3D shapes. Tak-

ing the 2D point sets for example, assuming that we have k landmarks uniformly

distributed on the template circle, O = {(rcos(2(i−1)π
k

), rsin(2(i−1)π
k

))}i=1,2,...,k.

We further concatenate the learned descriptor with each landmark point of the tem-

plate. ∀Pi ∈ P, we have its shape descriptor Li = F1(Pi) = (li1, ..., l
i
512) ∈ R512. We

denote the shape morphing initiator Oi = {(rcos(2(p−1)π
k

), rsin(2(p−1)π
k

), li1, ..., l
i
512)}p=1,2,...,k

as our input to the motion-driven embedding network. On one hand, the shape

descriptor decides the movement of landmarks during the embedding process. On

the other hand, this template circle provides a type of topology constrain on the

learned descriptor.

Motion-driven embedding process. We introduce motion-driven embedding
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process to learn the offsets (we denote Si) of landmark points based on its shape

morphing initiator Oi to further reconstruct the target shape. We denote the

motion-driven embedding network F2 : Oi → Si. F2 includes three successive

multi-layer perceptrons g1, g2 and g3, such that g1 : R514 → R256, g2 : R256 → R64,

g3 : R64 → R2. We define F2 as: ∀Pi ∈ P, we have Oi such that,

F2(Oi) = g3(g2(g1(Oi))) (3.3)

, where Si = F2(Oi) is the learned offsets for landmark points. The reconstructed

shape P′i = O + Si. Thanks to the continuity of function F2, the local topology of

landmark points remains unchanged during the embedding process. In this way,

our motion-driven process coherently drift all landmark points to the target posi-

tion without changing their local topology.

Chamfer Loss. In this chapter, we adopt the Chamfer Loss to compare our

reconstructed point clouds P′ ⊂ R2 and input point clouds P ⊂ R2 as:

LChamfer(P,P
′|γ) =

∑
x∈P′

min
y∈P
||x− y||22

+
∑
y∈P

min
x∈P′
||x− y||22

(3.4)

, where γ represents all network parameters to be optimized.
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Figure 3.3: Point Correspondence procedure with the Hungarian matching algo-
rithm. The Left part shows the input point sets, and the right part shows their
reconstructed shapes from a template circle.

3.1.3 From reconstructed results to unsupervised corre-

spondences.

After network training, our proposed model produces high-quality shape recon-

structions. Although our training process does not receive any explicit supervision

for shape correspondence, the self-morphing process from a template circle inher-

ently leads to the natural shape correspondence on reconstructed shape since all

the reconstructed shapes are embedded from the same circle of landmarks. The

inherent point correspondences provide a reference for the desired correspondence

generation. We can turn this correspondence relationship back to the original

shape pairs by filling the gap between each shape and its reconstruction. In this

chapter, we use the Hungarian matching algorithm to build the link between each

point set with its reconstructed shape.
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The overall matching procedure is shown in Figure 3.3. For better understand-

ing, we illustrate the process of finding the correspondence point x̃j1 in shape Pj

for the referring point xi1 in shape Pi ((j 6= i)). Firstly, through the Hungar-

ian matching algorithm, we find the matching point ok + sik in its reconstruction

O + Si. Secondly, we use the point index k to get its corresponded point ok + sjk

in O + Sj. Since all the reconstructed shapes are embedded from the same tem-

plate circle, these two corresponded points have the same number in the circle O.

Finally, we use the Hungarian matching algorithm again to find the point back in

Pj from ok + sjk in its reconstructed shape, and generate the final correspondence

point x̃j1 in shape Pj.

3.2 Experimental Results

Section 3.2.1 describes our dataset and the implementation details. In section

3.2.2, we analyze the embedding and unsupervised correspondence mechanism by

examples. We test the robustness of model under deformation, noise and missing

points in section 3.2.3. We show the performance of our model on 3D point sets

in section 3.2.4.

3.2.1 Dataset and implementation Details

In the experiments, we use a 2D point set of a fish shape which contains 91

points for demonstrating the effectiveness of our proposed method. Following [1],

the thin-plate spline (TPS) [39] transformation with a uniform 3x3 grid of control

points is adopted to generate our synthetic target point sets. The target point sets

at different deformation levels are simulated by perturbing the controlling points
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using various levels of numerical shifting, followed by a smooth 2D interpolation.

Specifically, given the deformation level k, a Gaussian random shifting vector with

zero-mean and 2k variance is generated to perturb the controlling points. We follow

the same setting to synthesize the testing dataset which is not used for training.

To evaluate the correspondence performance, we randomly pick out 100 shapes

from the training/test dataset and evaluate the pair-wise correspondence among

all pairs. For each pair, one is used as a reference shape, and the other one is

regarded as the target shape for evaluation. The final correspondence accuracy is

calculated as an average over all shape pairs.

Our network is optimized using Adam optimizer with an initial learning rate

of 0.001. We decay the learning rate by 0.995 every 100 steps, with a minimum

value of 1e-6. We set batch size to 32, momentum to 0.9, and weight decay to 1e-5.

We used leaky-ReLU [35] activation function and applied batch normalization [37]

to each convolution layers except the output layer. We implemented our method

with Tensorflow Library on a Tesla K80 GPU.

3.2.2 Illustration of Motion-Driven Process

In this section, we look into detailed steps of the motion-driven embedding

process to better understand the mechanism of the coherent drift of the landmark

points from a template shape (i.e. circle) to the corresponding positions of the

target shape during the training process. As shown in Figure 3.4, three fish shapes

are randomly selected from the synthesized training dataset with a deformation

level of 0.3 for the demonstration of the motion-driven process. Each fish shape

is wrapped around a template circle consisting of 91 landmark points with unique

indexes assigned. The landmark points preserve the correspondence among three
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Figure 3.4: Illustration of our Motion-driven embedding process. Landmark points
are numbered with color and the blue fishes in last column are input shapes.

template circles.

In the experiment, we illustrate how the template circle morph and conform

around the target shape (e.g. fish) step by step at iteration 100, 300, 500, 1000,

10000 and 600000 as shown in Figure 3.4, which consequently lead to the gradual

drift of the landmark points from the template circle to corresponding points on

the target shape in order to further determine the point set correspondence. Under

the guidance of decoding a global shape descriptor to the original input fish shape,

the motion-driven embedding process starts with globally morphing the template

circle. The second column of Figure 3.4 illustrate the globally morphed template

shape after 100 iterations of shape deformation. We can observe that the globally

morphed shapes share similar geometric configuration with all represented in a

similar triangle shape. It is also interesting to notice that the landmark points

from all three template circle coherently move towards the corresponding regions

of these three triangles. As indicated in the figure, the vertices from three triangles

uniquely corresponding to the landmark points with landmark indexes: [20, 50,
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80].

The fifth row of Figure 3.4 illustrates the morphed template shape after 1000

iterations of deformation. As shown in the figure, the template shape starts to cap-

ture the local geometric structure context information and morph toward the asso-

ciated fish shape. It comes to our attention that all landmark points progressively

drift to the corresponding parts of further morphed shape. The motion-driven em-

bedding process converges at 600000 iterations. The template circle shape morph

and conform around the desired the fish shape as shown in Figure 3.4. All of the

landmark points coherently drift the corresponding points of the morphed shape

as indicated in the figure, which leads to a natural correspondence among the

populations of fish shapes.

3.2.3 Generalization ability on test dataset

To further prove the generalization ability of our proposed model, we randomly

generate another 100 shapes under a deformation level of 0.3 and use our PC-Net

model to predict the point correspondence among all shapes. Following the above

pair-wise evaluation strategy, we plot the training and test correspondence metric

for various Euclidean distance thresholds. As shown in Figure 3.5, our model

achieves nearly the same performance for unseen shapes on the test set as on

the training set. This further demonstrates the powerful generalization ability of

our proposed model. Note that our model is non-parametric and can predict the

point correspondences among a group of point sets instantly without any iterative

searching process.
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Figure 3.5: Correspondence performance on test set.

3.2.4 Linear shape interpolation

To demonstrate the effectiveness of our point-based feature encoder network, we

checked the feature interpolation ability between two inputs. Figure 3.6 visualizes

some examples of intra-class interpolations. One can see that our proposed model

can get continuous shape reconstruction using interpolated feature vectors.

3.2.5 Robust to deformation, noise, and missing points

Firstly, we evaluate the robustness of our model under various deformation

levels with (0.3, 0.4, 0.5, 0.6, 0.7, 0.8). Figure 3.7(a) shows the correspondence

accuracy within a given Euclidean distance from the matching point to the refer-

ence point on the target shape. As shown in Figure 3.7(a), our model can achieve

nearly all correct point correspondence with a Euclidean distance threshold of 0.3.

Moreover, with the increase of deformation level, our model gets a reasonable per-
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Figure 3.6: Examples of linear interpolation. ‘GT1’ and ‘GT2’ show two input
shapes, ‘Rec1’ and ‘Rec1’ show their reconstructed shapes, and the middle columns
show the interpolated shapes. Our model got continuous shape reconstruction
using interpolated feature vectors. Note that the landmark points on each shape
are corresponded to the landmark points on the other shapes.

(a) (b) (c)

Figure 3.7: Robustness test. (a) Correspondence quality at different deformation
levels. (b) Correspondences quality at different noise level. (c) Correspondence
quality with different number of missing points.
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formance degradation for shape correspondence. Same findings can be seen from

Figure 3.7. In Figure 3.7, we show selected examples at different deformation lev-

els. Even without explicit supervision, our PC-Net model can effectively produce

accurate point correspondences at different deformation levels.

To further test the robustness of our proposed PC-Net model for point corre-

spondence under the situation of noise, we add Gaussian noise to each point of

the shapes, with different standard deviation values of [0.1, 0.2, 0.3, 0.4, 0.5, 0.8].

Quantitative correspondence results are shown in Figure 3.7(b). As was expected,

our correspondence performance deteriorates with larger noise levels. When the

noise level is smaller than 0.5, our PC-Net model can still maintain a satisfactory

performance for shape correspondence. This is mainly due to the fact that the

max-pooling operation in our point-based encoder can remain unchanged under

small distortions. Selected visualization results are shown in Figure 3.8.

Furthermore, we test the performance of PC-Net with randomly missing points.

Specifically, we first randomly select a point from a shape and then drop out its

nearest K points. In our experiments, K varies from 5 to 30 with a step of

5. We train six separate models for each K. To evaluate the correspondence

performance, we only take into account the points existing in paired shapes (we

recorded the original point index during our data generation process). As shown in

Figure 3.7(c), the correspondence performance deteriorates as K increases. This is

because the corrupted input point sets have a larger difference in encoded feature

which can disturb our motion-driven embedding process, and thus affect the point

correspondences. Although our PC-Net model fails to achieve the accurate point

correspondences under this situation, it can still match the overall shape given a

Euclidean distance threshold of 0.3. Selected visualization results are shown in
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Figure 3.8: Examples of point correspondence at (a) different deformation level,
(b) different noise level, and (c) different number of missing points. The top rows
in (a)-(c) show the reference shapes, the middle rows in (a) show the reconstructed
shapes, and the bottom rows in (a)-(c) show the predicted shapes with correspon-
dences. We annotate some corner points in the reference shapes (top row) and find
out their matching points in the target shapes (bottom row); whereas numbers on
the shapes of the middle rows in (a) indicate the indexes of landmark points. The
‘red triangle’ indicates ground truth point with a point label ‘18’, while the ‘green
cross’ indicates its corresponding point.
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Figure 3.8. As shown in Figure 3.8, each pair of shape fits well overall, with a

small error of Euclidean distance.

3.2.6 Rotation discussion

To evaluate the performance of our proposed model under arbitrary shape ro-

tations, we trained a separate model using 5000 shapes with randomly rotation

angles. Figure 3.9 gives some visualization examples. As shown in Figure 3.9, our

correspondence quality is quite sensitive to rotation. This is because our model

takes a fixed circle as input for point embedding. On one hand, this guarantees the

shape correspondence during our motion-based embedding process; on the other

hand, it limits the power of our model for rotated shapes correspondence. There-

fore, to use our model for real-world point cloud data, it’s necessary to align each

shape to the same direction as a pre-processing. It is worth mention that despite

our model fails to match the correspondence points under rotations (see second

row in Figure 3.9), it still maintains a good correspondence for each corner (see

the first row in Figure 10 for illustration). The color pattern in each reconstructed

shape remains the same order as our input circle.

3.2.7 Correspondence for 3D point sets

For evaluate our approach on 3D point clouds dataset, we conduct experiments

on the FAUST benchmark dataset [40]. FAUST dataset includes 100 human shapes

in 10 different poses. For each shape, we sample 6890 points from the original

point sets following [32]. For simplicity, we do not use mesh information in our

experiments for these two data set.

In the above 2D shape correspondence task, a fixed circle is used to match the
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Figure 3.9: Selected examples of arbitrary rotations. Numbers in the top indicate
the rotation angles. The first row show the reconstructed shapes, the second row
shows the predicted shape correspondence. Even though our model fails to match
the correspondence points (see second rows for illustration), it maintains a good
correspondence for each corner (see the first row for illustration). The color pattern
in each reconstructed shape remains the same order as our input circle.

Figure 3.10: Selected examples of 3D shape correspondence on FAUST dataset.
The first shape is used as a reference. First row shows successful correspondence
examples, second row shows failure examples. Note that our results are generated
in an unsupervised way.
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input 2D points. In this experiment, instead, a spherical surface template is used

to match the 3D point cloud for both FAUST dataset. The diameter is chosen

based on the average shape size. Selected examples of 3D shape correspondences

are illustrated in Figure 3.10. As shown in Figure 3.10, our model can achieve

satisfactory correspondences for 3D point sets as well even without explicit super-

vision.

3.3 Discussion

In this chapter, we propose a novel non-parametric learning-based point cor-

respondence framework in an unsupervised manner. We propose a “shape mor-

phing initiator” with a “motion-driven embedding” network which progressively

and coherently drifts all landmark points from a template shape to corresponding

positions on the target shape without using ground truth labels. Experimental re-

sults demonstrate the robustness of our model under various levels of deformation,

missing points, and noise. More importantly, with demonstrated generalization

ability, our proposed PC-Net can directly predict the correspondences of two or

more unseen point sets.
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Chapter 4

Application In 2D Image

Matching

(This chapter is submitted as a paper “MF-GeoNet: Model-Free Geometric

Transformation Network for Image Matching” with Jianchun Chen et al. as co-

authors under review.)
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In addition to the CPD-Net in chapter 2, we further introduce an application

of learning based model-free network for image matching. Recent efforts introduce

convolutional neural network to learn a geometric model (i.e. an affine or thin-

plate spline transformation) for image matching and determine correspondences

between two images. The incapability of a geometric model in estimating a high

complexity parametric transform limits their use in applications to coarse image

alignment/matching. This chapter presents a novel approach to learn a model-

free geometric transformation to estimate a continuous smooth displacement field

and identify two images with a significant geometric deformation. In contrast to

model-based method, our proposed method, named Model-Free Geometric Trans-

formation Networks (MF-GeoNet), can learn displacement vector function to esti-

mate geometric transformation from a training dataset. MF-GeoNet is trained to

have robust generalization ability to directly predict the desired geometric trans-

formation to identify the correspondence between unseen new pair of images. Fur-

thermore, MF-GeoNet is theoretically proved to learn a continuous displacement

vector function to avoid imposing a parametric smoothness constraint by regular-

izing the displacement field. The experiments demonstrate that MF-GeoNet can

generalize from training data to predict continuous smooth displacement field to

reliably identify the correspondence between two images. We conducted experi-

ments over both synthetic and real image dataset. The results demonstrate the

superior performance of MF-GeoNet over other state of-the-art techniques in iden-

tifying the correspondences, even when images are in the presence of significant

geometric deformation.

Image level point correspondence matching has been a key challenge for com-

puter vision society, since this technology is widely applied in various tasks such
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Figure 4.1: Comparison between geometric transformation model (A) and our
proposed model-free geometric transformation network (B).

as tracking [41], medical image registration [34] and camera pose estimation [42].

Main stream methods tackle this problem through fitting a geometric transforma-

tion function between corresponding point set from image pairs.

To this end, traditional image correspondence estimation approaches normally

carry out two-step implementations as follows. It starts with the computation

of a pre-defined hand-crafted image feature descriptor such as SIFT and HOG

[43, 44] to obtain a pixel-level description and followed by a process to iteratively

optimize a specific geometric transformation model through the feature matching

algorithm such as RANSAC [45] and Hough transform [46], aiming to minimize a

matching loss function. In general, these methods perform well in identifying the

reliable image correspondence but face challenges posed by 1) the dramatic image

appearance variation (i.e. texture, color, lighting changes and so on) between

two images, 2) the significant geometric structural variation between two images

as those image conditions greatly impact the quality of the hand-crafted image

descriptor.

With the success of deep neural network, researchers started to investigate the
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learning-based approaches [1, 47, 48, 49] to address the above mentioned challenges

with the hope to generalize from training to predict real-time image matching

that is robust to various deteriorated image conditions. As shown in Figure 4.1

(A), those efforts are concentrated on the development of a paradigm to learn

a geometric model (i.e. affine or thin-plate) for image matching, which converts

the problem into the regression of parameters of the geometric model supervised

by minimizing the image matching loss. The learning based approaches greatly

improved the image matching performance, however it is suggested in [50] that

their methods lack capability in estimation of high complexity geometry due to the

incapability of the widely used geometric models (i.e. affine and TPS). In addition,

the mismatch between the transformation described by geometric models adopted

and the actual transformation required for image matching might potentially lead

to inappropriate estimation of desired geometric transformation.

This triggers our motivation to develop a model-free geometric transformation

networks (MF-GeoNet) with the hope to address the above mentioned issues faced

by learning a model-based geometric transformation for image matching. As shown

in Fig. 4.1 (B), this chapter presents a novel approach to learn a model-free

geometric transformation which estimates a continuous smooth displacement field

for image geometric matching. In contrast to model-based method, MF-GeoNet

fully leverages the deep neural network for fitting arbitrary displacement vector

function. Compared with previous efforts, our proposed structure has 1) large

degree of freedom for complex transformation modeling; 2) dense displacement field

prediction without inaccurate interpolation operation; 3) the spatial continuity of

displacement field preserved by network structure without using any penalization

term.
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Figure 4.2: Main pipeline: Our proposed architecture comprises of two parts -
Image-Matching Feature Learning and Geometric Transformation Network. For a
given pair of input images, we first extract the Image Description Tensor fA and
fB through convolutional neural network. We next generate Image Correlation
Tensor CAB between the two Image Description Tensors. Furthermore, we embed
this Image Correlation Tensor into a latent feature dAB which represents Image-
Matching Feature. Finally, we pass this feature through Geometric Transformation
Network comprising of MLPs which predicts desired displacement field and con-
sequently transform points in the source plane to target plane. We minimize the
Mean Square Error Loss between the corresponding points between predicted point
set and the ground truth point set.
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In this chapter, we present a novel model-free geometric transformation net-

work for image correspondence matching. As illustrated in Fig. 4.2, the first

component of our network is named “Learning Image Description Tensor”, where

a fixed-weight convolution neural network is employed to extract two feature maps

out of the input image pair. The following “Learning Image Correlation Ten-

sor” component learns the dense correlation between two feature maps through

correlation layer and normalization layer. The third component is “Learning

Image-Matching Feature”. In this component we embed the Image Correlation

Tensor into a latent vector, which describes the geometric transformation between

the image pair. “Geometric Transformation Network” is the last component, which

is visualized in Fig. 4.1. We exploit a stack of deep neural network which decodes

the Image-Matching Feature to a desired geometric transformation function. With

this Geometric Transformation Network, we estimate image correspondence by

transferring key point from source image to the target image. We use a Mean

Square Error as loss function to supervise the Geometric Transformation Network

learning, as well as the Image-Matching Feature learning. The main contributions

of method are briefly summarized.We proposed a MF-GeoNet which solves the

incapability of geometric models in estimating high complexity parametric trans-

formation. We leverage the power of neural network in fitting arbitrary trans-

formation function to accommodate any different complexity level of geometric

transformation according to actual needs. Our proposed Geometric Transforma-

tion Network is theoretically guaranteed to produce a spatially continuous displace-

ment field. With this property, we avoid imposing additional penalization term on

displacement field as smoothness constraint. Our MF-GeoNet is a model-free geo-

metric transformation method which does not require model selection procedure.
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Consequently, we avoid the critical mismatching problem of selected transforma-

tion model and actual desired geometric transformation between image pair. Our

experiment demonstrates the effectiveness of our proposed MF-GeoNet in image

correspondence matching. Our model achieved superior performance over other

state-of-the-art approach for image matching, especially in high complexity trans-

formation scenario.

4.1 Methods

4.1.1 Image-Matching Feature Learning

In this section, we present a deep neural network architecture that takes two

images as inputs and outputs an Image-Matching descriptor that determines de-

sired geometric transformation to align the source point set of one image with

the target point set of the other. As illustrated in Fig. 4.2, the pipeline of this

section consists of Image Description Tensor Learning (blue block), Image Correla-

tion Tensor Learning (yellow block) and Image-Matching Feature Learning (green

block). In following paragraphs, we describe each of the above stages in detail.

Learning Image Description Tensor: MF-GeoNet starts with extracting image

features by convolutional neural network. The network is based on ResNet-101 [51]

architecture with layers active till ‘global average pooling’ layer followed by L2-

normalization. The neural network produces a feature map of the input image

with dimensions f ∈ Rh×w×c (which is defined as Image Description Tensor in

this work), where h × w denotes the size of the feature map and c denotes the

feature dimension. We visualize the Image Description Tensor using cyan blocks

in Fig. 4.2. Two weight-shared CNN are used to generate two Image Description
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Figure 4.3: Visualization of hidden features after each MLP layer. The feature
of each point is reduced to 2 dimension by Principal Component Analysis (PCA).
The last figure is the offset prediction of a set of grid point, which is also called
deformation field. All MLPs and input feature are randomly initialized.

Tensors from input image pair.

Learning Image Correlation Tensor: The second stage of the network deals in

learning dense correlation between the two Image Description Tensor, where the

result is defined as Image Correlation Tensor. We visualize the Image Correlation

Tensor using an orange block in Fig. 4.2. The alignment layer generates similar-

ity scores by mapping their spatial location while discarding the original Image

Description Tensor. Our alignment layer comprises of two components. First is

the correlation layer which is responsible for computing all pairs of similarities

between the two Image Description Tensors fA and fB. Second, these similar-

ity scores are then processed through normalization layer to eliminate unwanted

ambiguous matches from the network. For a given image pair, the Image De-

scription Tensor generated fA, fB ∈ Rh×w×d, the corresponding Image Correlation

Tensor CAB ∈ Rh×w×(h×w) then comes as the result of the correlation layer. Detail

description of the function is shown in the Eq. 4.1.

CAB(m,n, k) = fB(m,n)TfA(mk, nk) (4.1)
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where (m,n) and (mk, nk) represent each individual position in the feature map of

the two images. The variable k is calculated with the help of the Eq. 4.2.

k = h(nk − 1) +mk (4.2)

Once we obtain the Image Correlation Tensor, it becomes equally important

to post-process those similarity scores to remove the redundant values. The nor-

malization operation is applied to each spatial location of the Image Correlation

Tensor. This process refines the Correlation Tensor by reducing the ‘outliers’

matching value. Specifically, we first pass the raw similarity scores through ReLU

function which cancels out all the negative correlation score. Following this, the

intermediate results are processed with L2-normalization. The L2-normalization

successfully amplifies scores of confident feature matching while reduces scores of

ambiguity feature matching via a quadratic function. These two layers take lo-

cal feature correlation into a part of end-to-end network, which further enhances

the robustness by capturing patterns of ‘inliers’ and ‘outliers’ feature in network

training.

Learning Image-Matching Feature: In this stage, we designed an architecture

by sequentially stacking two modules that consists of convolutional neural network,

batch normalization, ReLU and a final fully connected (FC) layers. The motiva-

tion here is to fully leverage the correlation score of neighbor points for a ‘patch’

to ‘patch’ alignment by CNN layer. Following FC layer embeds the features of cor-

relation tensor into a latent vector called Image-Matching Feature, which encodes

intrinsic geometric transformation information. The Image-Matching Feature is of

dimension m.
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4.1.2 Geometric Transformation Network

In this section, we introduce our Geometric Transformation Network, as illus-

trated in Fig. 4.2 (grey block). The Geometric Transformation Network learns a

continuous transformation function P → Q from source plane P to target plane

Q. We first repeat Image-Matching Feature for n times, where n is the number of

point in source plane P. As shown in the figure, for each point p ∈ P, we concate-

nate its coordinate to a Image-Matching Feature dAB to form a new point feature

with dimension m + 2. A series of Multi-Layer Perceptrons (MLPs) with Batch

Normalization (BN) layers and Rectified Linear Unit (ReLU) layers are carried out

to learn the point-wise displacement. The overall transformation is defined as:

T (p) = Fθ1,...,θn([dAB, p]) + p (4.3)

where [.] means the concatenation operation and θi denotes the network parameters

of layer i.

The spatial continuity of transformation function T is necessary for a smooth

image warping. Since our learned function T is intrinsically continuous, we avoid

imposing a parametric smoothness constraint by regularizing the displacement

field. To prove this property, we first expand the first MLP layer as follows:

Fθ1,...,θn([dAB, p]) = Fθ2,...,θn(W1dAB +W2p+ b) (4.4)

Since all MLP, BN and ReLU layers are continuous function and dAB is invariant

for points in same plane space, Fθ(.) is continuous for ∀p ∈ P. The concatenated

94



www.manaraa.com

correlation descriptor dAB only controls the transformation function by adding

a bias term in the first layer of MLP, which does not break the continuity of

the function. According to the definition of continuous function, we have our

transformation function T to be continuous, as shown in Eq. 4.5.

lim
pi−pj→0

T (pi)− T (pj) = F(pi)−F(pj) + (pi − pj) = 0 (4.5)

In Fig. 4.3, we further demonstrate that the hidden features after any MLP

layer preserves spatial continuity. The hidden features associated with the lower

layer represent a linear transformation, which is similar to affine transformation.

With the increase of MLP and ReLU layers, the network has a capacity in fitting

complex non-linear transformations.

In general, our method leverages the power of deep neural network to fit an arbi-

trary function. Compared with lower complexity parametric models, our method is

sufficient to accommodate an arbitrary high complexity geometric transformation.

Moreover, our Geometric Transformation Network is end-to-end trainable and can

be jointly trained with other modules of our MF-GeoNet such as Image-Matching

Feature Learning network.

4.1.3 Loss Function

It is critical to train a deep neural network with proper loss function. For image

matching, due to the presence of highly complex arbitrary geometric deformation in

the image, the unsupervised distance measurement (i.e. Chamfer Distance) might

not capture the essential geometric difference between two images. Therefore,

in our current implementation, we train our MF-GeoNet with a supervised loss

95



www.manaraa.com

function defined as below. Given two set of image keypoints P and Q, the loss

function is defined based on the average of all pairwise distances between two

corresponding keypoint (refer to Eq. 4.6)

L(T (P ), Q) =
1

N

N∑
i=1

||T (pi)− qi||22 (4.6)

The loss function is back-propagated for optimizing parameters in both Feature

Extraction Network and Geometric Transformation Network.

4.1.4 Implementation Details

The Image-Matching Feature Learning procedure follows the similar setting in

[1]. Taking two image IA, IB as input, a ResNet-101 [51] based architecture was

carried out to learn Image Description Tensor fA, fB. We used the pretrained

network weights from ImageNet dataset [52] and freeze these parameters from

back-propagation. After we got Image Correlation Tensor CAB, we conducted 2

CNN layers with channels (128,64) and kernel size (7,5) respectively. The last

fully-connected layer regresses Image-Matching Feature dAB ∈ R1024. For each

single point in 2D image, we normalized it into [−1, 1] and concatenate a repeated

Image-Matching Feature dAB on its coordinates. In synthetic dataset, we select

a 20 × 20 grid points as keypoints. In Geometric Transformation Network, the

hidden features after 4 MLPs are of size (1024,256,64,2), where the 2 dimension

output is regarded as the displacement vector of each input point. We used Adam

optimizer for training with learning rate 3 × 10−4. Our model was implemented

using PyTorch framework and ran on a single Nvidia GTX 1080Ti GPU with 11
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GB on- board memory.

4.2 Experimental Results

We carried out two sets of experiments to assess the performance of our method

on image correspondence matching problem. We conducted both qualitative and

quantitative evaluation to better assess MF-GeoNet’s performance for image match-

ing. In section 4.2.1, we describe the general experimental setting. In section 4.2.2,

we verify the effectiveness of our proposed MF-GeoNet in estimating image geomet-

ric transformation with different complexity levels. In section 4.2.3 we produced

quantitative comparisons on real image correspondence matching with baseline

methods. Section 4.2.4 depicts the visualization result of real image semantic

alignment.

4.2.1 Experiment Setup

Datasets. Pascal VOC 2011 dataset contains 28, 952 images in total and each

image has its object level annotation. In the experiments, we use Pascal VOC 2011

[53] dataset to prepare our training and testing dataset. For each image in Pascal

VOC, we apply geometric transformation [1] (both affine and TPS) to obtain a

synthesized transformed image. The paired raw and transformed images are used

for training and testing during the experiments. For real image correspondence

matching, we evaluate our model based on Proposal Flow dataset by Ham et. al

[2]. This dataset comprises of 900 image pairs, with each image portraying multiple

instances of same class or different class objects in them. Moreover, the images

contain significant amount of background clutter to estimate model’s generalization
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ability.

Baseline. We have compared MF-GeoNet’s performance with the popular meth-

ods such as SIFT Flow[43], Graph Matching Kernals [54], Deformable Spatial

pyramid matching [55], DeepFlow [56] and different versions of proposal Flow[2].

These models serve as the benchmark to assess our model performance. We also

compare our model with CNNGeo [1], which achieved best performance in su-

pervised learning. CNNGeo has a similar backbone structure as our proposed

method, containing feature extraction network and feature alignment network.

However, CNNGeo regresses the parameter of specific geometric transformation

model. They use two geometric models in their pipeline: affine transformation

and TPS transformation. The CNNGeo use affine or TPS to model the geometric

transformation. In addition, to enhance their performance, they implement a two-

stage estimation of the geometric transformation. In the first stage, they estimate

an affine transformation between source image and target image while using same

parameter to warp the source image. In the second stage, they estimate the TPS

transformation between the warped source image and target image to identify the

image correspondence.

Evaluation Metric. For experiment in Proposal Flow dataset [2], we follow a

standard evaluation metric used for the model benchmark, the average probability

of correct keypoint (PCK)[57]. A keypoint is counted as a correct match if the

predicted location is within an allowed distance of α×max(h,w) to target keypoint

position, where we consider α = 0.1. h and w are height and width of object

respectively in our experiment. For experiment in synthesis dataset, we directly

use Mean Square Error between corresponding points as evaluation metric, as

illustrated in Eq. 4.6.
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4.2.2 Comparisons on synthetic image matching

In this section, we demonstrate the effectiveness of our MF-GeoNet in modeling

arbitrary and complex image geometric transformation. We compared our MF-

GeoNet with CNNGeo[1] for image matching. In this experiment, the CNNGeo

used TPS as its geometric model with 3× 3 controlling point. The experiment is

conducted on TPS synthesis train/test set from Pascal VOC 2011 dataset [53]. To

simulate geometric transformation with different complexity, we adjust the number

of controlling point for data generation. We design two tests under this section.

• In the first test, we are interested in understanding how well MF-GeoNet

perform against different levels of transformation complexity. Therefore, we

increase the complexity of the geometric transformation by gradually adding

more TPS controlling points into our test settings. We compare the perfor-

mance of MF-GeoNet with CNNGeo model against the same environmental

settings.

• In the second test, we wanted to test our model for the real-world image

matching scenarios. As we do not have a prior knowledge on the complexity

and the type of transformation required for image matching, thus the mis-

match between the transformation described by geometric models and the

actual transformation required for image matching might potentially lead to

inappropriate estimation of desired geometric transformation. Therefore, to

test this, we simulate a mismatching scenario and compare the performance

between our MF-GeoNet and CNNGeo models. We prepare the synthesized

data by applying at TPS with 6 × 6 controlling points on the Pascal VOC

dataset.
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Figure 4.4: Quantitative comparison between our model and CNNGeo [1] in syn-
thesis testing datasets with different number of controlling point (A) and visual-
ization of images transformed by TPS with different controlling point. Subplot
(B), (C), (D) and (E) are from TPS transformation with 3× 3, 4× 4, 5× 5, 6× 6
controlling points respectively.

Result of Test 1: During this test, we increase the controlling points from 4× 4

to 6 × 6. The Fig. 4.4 demonstrates the comparative result for both methods.

As we can see from the figure, MF-GeoNet (shown in blue) has a consistent lower

MSE score than that of CNNGeo (shown in red) while we constantly increase the

complexity of the transformation. In addition, from the illustration we can infer

that as we gradually increase the controlling points, the corresponding MSE loss

increases steeply for CNNGeo model as compared to our model. For instance,

at a given controlling point (6 × 6), CNNGeo model has a MSE value of 0.014

whereas for the same controlling point, our model recorded a MSE value of 0.006.

Moreover, for a given pair of controlling points, the slope of CNNGeo curve (red)

is 200% higher than the slope of MF-GeoNet curve (blue).

Result of Test 2: We visualize the comparative results for MF-GeoNet and

CNNGeo as shown in Fig. 4.5. In the Fig. 4.5, the first row shows the original
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Figure 4.5: Qualitative comparison between our model and CNNGeo [1] in dataset
synthesized by 6× 6 controlling points TPS with deformation level equals to 0.2.
Red mesh denotes the displacement field.

source image and the second row shows the transformed synthesized images. The

third row demonstrates the ground truth displacement field, and the fourth and

fifth row show the estimated displacement fields by MF-GeoNet and CNNGeo

respectively. From the comparison, we can see that the predefined 3 × 3 control

point TPS model significantly underfits the 6×6 control point TPS transformation,

while MF-GeoNet is able to estimate complex local transformation.
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Methods PCK(%)

DeepFlow [56] 20
GMK [54] 27
SIFT Flow [43] 38
DSP [55] 29
Proposal Flow [2] 56
CNN feature + RANSAC 47
CNNGeo (affine) [1] 55.9
CNNGeo (TPS) [1] 58.2
CNNGeo (affine+TPS) [1] 67.6
Ours-A 59.5
Ours-B 60.0
Ours-C 66.5
Ours-(A+B) 67.8

Table 4.1: Comparison of PCK with our baseline methods in full Proposal Flow
dataset [2]. Learning-based methods are trained on synthetic dataset. The settings
of our four models are described in Section 4.3.1.

Methods PCK(%)
Affine[1] 73.04±0.33
TPS [1] 78.07±1.43

Affine+TPS [1] 73.20±0.27
Ours 85.17±0.62

Table 4.2: Comparison of PCK with our baseline methods in Proposal Flow dataset
[2] under K-fold setting. Details are described in Section 4.3.2
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Figure 4.6: Qualitative results and comparisons on Proposal Flow dataset [2]. The
selected pictures from 3 categories (motorbike, car and winebottle) are of complex
transformation.

4.2.3 Comparisons on real image point correspondence match-

ing

In this section, we conduct real image point correspondence matching experi-

ment on Proposal Flow dataset [2] under two different experimental settings. In

Section 4.2.3.1, we use complete Proposal Flow dataset to evaluate our MF-GeoNet

trained on synthetic dataset. In Section 4.2.3.2 we split Proposal Flow dataset into

training and testing set and perform K-fold evaluation of our MF-GeoNet.
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4.2.3.1 Experiment One.

For this task, we prepared 3 MF-GeoNet models named Ours-A, Ours-B and

Ours-C. These three models share same architecture as we described in Section 3.

Each model is fed with different type of synthetic data. Ours-A is trained on image

synthesized by affine transformation. Ours-B is trained on image synthesized by

TPS transformation. Data used for Ours-C is synthesized by a combination of

affine and TPS transformation. In addition, similar to CNNGeo [1], we combines

Ours-A and Ours-B to construct a 2-stage model Ours-(A+B) in a coarse-to-fine

paradigm.

From Table 4.1 we can see that our proposed method outperform all previous

methods as listed in the table. We mainly compared our MF-GeoNet with CNNGeo

in this test as follows. For one stage training, we compared CNNGeo (Affine) with

Ours-A and CNNGeo (TPS) with Ours-B. Our models have about 4% and 2%

PCK improvement respectively. For two-stage training, we compare CNNGeo

(affine+TPS) with Ours-(A+B). The Ours-(A+B) gains 0.2% improvements over

CNNGeo (affine+TPS). In addition, it’s interesting to see that, in one stage, Ours-

C can estimate the geometric transformation which is generated by a combination

of affine and TPS transformation. It can even achieve superior result by 8% PCK

improvement against CNNGeo (TPS). In contrast, CNNGeo needs to estimate

transformation in two stages.

The possible reason for the marginal improvement of Ours-(A+B) over CN-

NGeo (affine+TPS) in the testing case is that the synthesized training data is

simulated by affine and TPS transformation. Therefore, our MF-GeoNet might

not generalize from those training datasets to predict geometric transformation

other than affine and TPS. Consequently, it is reasonable that Ours-(A+B) and
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CNNGeo (affine+TPS) achieved comparative result on real dataset. For this rea-

son, we conducted additional experiment in Section 4.3.3.2 to prepare new training

dataset from the real image.

4.2.3.2 Experiment Two.

In this section, we randomly split Proposal Flow Dataset into 3 folds. For

each instance we select the first two folds as the training set and the other one

as the test set. For CNNGeo, we prepared 3 models named CNNGeo (affine),

CNNGeo (TPS), CNNGeo (affine+TPS). All network parameters of MF-GeoNet

and CNNGeo in this section are trained from scratch except for the layers from

ResNet-101.

As shown in Table 4.2, our MF-GeoNet network outperforms CNNGeo by

a great margin. Compared with CNNGeo (affine), CNNGeo (TPS), CNNGeo

(affine+TPS), our model achieves 7%, 12% and 12% improvement respectively.

This experiment demonstrates that our proposed method is more desirable for real

image transformation.

4.2.4 Qualitative results on real image corresponding esti-

mation

Fig. 4.6 shows vivid illustrations of our model performances (under Section

4.3.3.1 setting) through real image based correspondence estimation. The images

contained large intra-class variations with a lot of background clutter, however,

our model prominently estimated large transformation as well as non-rigid trans-

formations. Each row here represents a new test result with columns containing

Source Image, Target Image, improved performance of our single Model C along
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with the performance of our Model (A+B). The last column is appended to this

which represents the performance of CNNGeo on the test image. It prominently

expresses the improved performance of our MF-GeoNet over CNNGeo. Unlike

model-based parametric transformation, our model-free geometric transformation

confirms the generalization ability towards a huge set of variations and takes into

account the capacity to incorporate large transformation estimations. Therefore,

our proposed MF-GeoNet proves to preserve spatial continuity during image trans-

formation while achieving superior results against parametric methods.

4.3 Discussion

We have presented a novel model-free geometric transformation network for

image correspondence matching, which has the capacity to fit complex geometric

transformation. Moreover, our model has proved to be continuous and to ac-

commodate arbitrary transformation, while avoiding mismatching problem earlier

caused by model-base methods. The experiments demonstrate the effectiveness

of our approach in image correspondence matching, especially for robustness in

complex image transformation.
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